Dr-COVID: Graph Neural Networks for SARS-CoV-2 Drug Repurposing

药物重新定位 2019年冠状病毒病(COVID-19) 重新调整用途 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019-20冠状病毒爆发 图形 药品 计算机科学 大流行 医学 病毒学 药理学 生物 内科学 传染病(医学专业) 理论计算机科学 爆发 疾病 生态学
作者
Siddhant Doshi,Sundeep Prabhakar Chepuri
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2012.02151
摘要

The 2019 novel coronavirus (SARS-CoV-2) pandemic has resulted in more than a million deaths, high morbidities, and economic distress worldwide. There is an urgent need to identify medications that would treat and prevent novel diseases like the 2019 coronavirus disease (COVID-19). Drug repurposing is a promising strategy to discover new medical indications of the existing approved drugs due to several advantages in terms of the costs, safety factors, and quick results compared to new drug design and discovery. In this work, we explore computational data-driven methods for drug repurposing and propose a dedicated graph neural network (GNN) based drug repurposing model, called Dr-COVID. Although we analyze the predicted drugs in detail for COVID-19, the model is generic and can be used for any novel diseases. We construct a four-layered heterogeneous graph to model the complex interactions between drugs, diseases, genes, and anatomies. We pose drug repurposing as a link prediction problem. Specifically, we design an encoder based on the scalable inceptive graph neural network (SIGN) to generate embeddings for all the nodes in the four-layered graph and propose a quadratic norm scorer as a decoder to predict treatment for a disease. We provide a detailed analysis of the 150 potential drugs (such as Dexamethasone, Ivermectin) predicted by Dr-COVID for COVID-19 from different pharmacological classes (e.g., corticosteroids, antivirals, antiparasitic). Out of these 150 drugs, 46 drugs are currently in clinical trials. Dr-COVID is evaluated in terms of its prediction performance and its ability to rank the known treatment drugs for diseases as high as possible. For a majority of the diseases, Dr-COVID ranks the actual treatment drug in the top 15.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
刚刚
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
稳重绿蕊发布了新的文献求助10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
丰知然应助科研通管家采纳,获得10
1秒前
丰知然应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得50
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
灵主发布了新的文献求助10
2秒前
2秒前
3秒前
酷炫邑发布了新的文献求助10
3秒前
wang1234发布了新的文献求助10
4秒前
王明磊完成签到 ,获得积分10
6秒前
asd发布了新的文献求助10
6秒前
研友_n0kW5L发布了新的文献求助10
7秒前
honeyman完成签到,获得积分10
7秒前
JHJ发布了新的文献求助10
8秒前
8秒前
无花果应助禾叶采纳,获得30
11秒前
我是老大应助li采纳,获得10
11秒前
Yifan2024应助认真画板采纳,获得20
12秒前
12秒前
酷波er应助小程同学采纳,获得10
13秒前
大鲟发布了新的文献求助10
13秒前
Dean发布了新的文献求助10
15秒前
15秒前
15秒前
爆米花应助心灵的守望采纳,获得10
16秒前
连垣发布了新的文献求助10
16秒前
彭于晏应助冷静剑鬼采纳,获得10
16秒前
lxr8900发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455021
求助须知:如何正确求助?哪些是违规求助? 3050304
关于积分的说明 9020908
捐赠科研通 2738923
什么是DOI,文献DOI怎么找? 1502343
科研通“疑难数据库(出版商)”最低求助积分说明 694500
邀请新用户注册赠送积分活动 693191