Head and neck multi-organ segmentation on dual-energy CT using dual pyramid convolutional neural networks

计算机科学 卷积神经网络 人工智能 分割 Sørensen–骰子系数 深度学习 感兴趣区域 模式识别(心理学) 图像分割 计算机视觉 棱锥(几何) 数学 几何学
作者
Tonghe Wang,Yang Lei,Justin Roper,Beth Ghavidel,Jonathan J. Beitler,Mark W. McDonald,Walter J. Curran,Tian Liu,Xiaofeng Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (11): 115008-115008 被引量:16
标识
DOI:10.1088/1361-6560/abfce2
摘要

Organ delineation is crucial to diagnosis and therapy, while it is also labor-intensive and observer-dependent. Dual energy CT (DECT) provides additional image contrast than conventional single energy CT (SECT), which may facilitate automatic organ segmentation. This work aims to develop an automatic multi-organ segmentation approach using deep learning for head-and-neck region on DECT. We proposed a mask scoring regional convolutional neural network (R-CNN) where comprehensive features are firstly learnt from two independent pyramid networks and are then combined via deep attention strategy to highlight the informative ones extracted from both two channels of low and high energy CT. To perform multi-organ segmentation and avoid misclassification, a mask scoring subnetwork was integrated into the Mask R-CNN framework to build the correlation between the class of potential detected organ's region-of-interest (ROI) and the shape of that organ's segmentation within that ROI. We evaluated our model on DECT images from 127 head-and-neck cancer patients (66 training, 61 testing) with manual contours of 19 organs as training target and ground truth. For large- and mid-sized organs such as brain and parotid, the proposed method successfully achieved average Dice similarity coefficient (DSC) larger than 0.8. For small-sized organs with very low contrast such as chiasm, cochlea, lens and optic nerves, the DSCs ranged between around 0.5 and 0.8. With the proposed method, using DECT images outperforms using SECT in almost all 19 organs with statistical significance in DSC (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
小蛙发布了新的文献求助10
2秒前
脑洞疼应助脱羰甲酸采纳,获得10
2秒前
2秒前
JamesPei应助明理楷瑞采纳,获得10
2秒前
Gumayusi发布了新的文献求助10
2秒前
4秒前
wildeager完成签到,获得积分10
4秒前
领导范儿应助千秋梧采纳,获得10
4秒前
冷艳的千亦应助李李李采纳,获得10
5秒前
hhhh发布了新的文献求助10
5秒前
5秒前
LL发布了新的文献求助10
6秒前
6秒前
LBH发布了新的文献求助10
6秒前
FashionBoy应助leo瀚采纳,获得10
7秒前
起風了发布了新的文献求助10
7秒前
科研通AI6应助独特的蛋挞采纳,获得10
8秒前
8秒前
没有答案发布了新的文献求助10
8秒前
若离发布了新的文献求助10
9秒前
科研通AI6应助学术版7e采纳,获得100
10秒前
pzh发布了新的文献求助10
10秒前
周同学完成签到,获得积分10
10秒前
11秒前
12秒前
邱文县发布了新的文献求助10
13秒前
千秋梧完成签到,获得积分10
14秒前
14秒前
沅沅发布了新的文献求助10
14秒前
14秒前
15秒前
隐形曼青应助不安的晓灵采纳,获得10
15秒前
15秒前
我学个P发布了新的文献求助10
16秒前
16秒前
浮游应助粥粥爱糊糊采纳,获得20
17秒前
千秋梧发布了新的文献求助10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436097
求助须知:如何正确求助?哪些是违规求助? 4548199
关于积分的说明 14212530
捐赠科研通 4468375
什么是DOI,文献DOI怎么找? 2448993
邀请新用户注册赠送积分活动 1439942
关于科研通互助平台的介绍 1416594