指纹(计算)
计算机科学
RSS
随机森林
多向性
人工智能
指纹识别
差速器(机械装置)
多层感知器
模式识别(心理学)
鉴定(生物学)
数据挖掘
特征提取
信号强度
人工神经网络
无线
数学
电信
工程类
操作系统
生物
航空航天工程
植物
方位角
几何学
作者
Gervionne Azizah S. Ferreras,Marc Caesar R. Talampas
标识
DOI:10.1109/wf-iot51360.2021.9595880
摘要
Existing research on localization using LoRa-based fingerprinting have focused on machine learning algorithms and not on the form of location fingerprints. For instance, the fluctuations of RSS measurements from LoRa devices are overlooked. In this work, we propose a differential fingerprint which fuses Signal Strength Difference (SSD), gateway information, and Time Difference of Arrival (TDoA) to improve localization performance. A publicly available LoRaWAN dataset is preprocessed to acquire a database of the proposed differential fingerprint. The database is then used to train two algorithms: Random Forest (RF) and Multilayer Perceptron (MLP). The best performing model is the Multilayer Perceptron-Out of Range Differential (MLP-OoRD) regressor which achieved a mean error of 310 meters and a median error of 57 meters with chronological data split.
科研通智能强力驱动
Strongly Powered by AbleSci AI