A review of processing strategies to generate melt-blown nano/microfiber mats for high-efficiency filtration applications

材料科学 超细纤维 透气比表面积 过滤(数学) 复合材料 压力降 空气过滤器 工艺工程 纤维 纳米技术 多孔性 机械工程 工程类 统计 热力学 物理 数学 入口 图层(电子)
作者
Yahya Kara,Kolos Molnár
出处
期刊:Journal of Industrial Textiles [SAGE]
卷期号:51 (1_suppl): 137S-180S 被引量:63
标识
DOI:10.1177/15280837211019488
摘要

Protective masks – worn properly - have become the key to wither away the COVID-19 pandemic. Nowadays, the vast majority of these masks are made of nonwoven fabrics. High-quality products have mainly melt-blown filtering layers of nano/microfiber. Melt blowing produces very fine synthetic nonwovens from a wide range of polymers and allows a fair control of the fiber structure and morphology that makes it ideal for filtration purposes. Melt blowing has a high throughput, and the low price of the filter makes these products widely available for civil use. Although melt-blown fiber applications were rapidly growing in the last three decades, we still have limited knowledge on the processing parameters. In this regard, we detailed the melt blowing parameters to obtain a filter media with high particle capturing efficiency and a low-pressure drop. We summarized the melt-blown fiber mat characteristics with specific attention to the pore size, the porosity, the fiber diameter, the fiber packing density and the air permeability desired for highly efficient filtration. Even though we cannot estimate the future social effects and the trauma caused by the current pandemic, and protective masks might remain a part of everyday life for a long while. That also implies that near-future investments in wider manufacturing capacities seem inevitable. This paper also aims to facilitate masks' production with improved filtration efficiency by reviewing the recent developments in melt blowing, the related applications, the effects of processing parameters on the structure and performance of the nonwoven products focusing on the filtration efficiency via knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助韆木采纳,获得10
刚刚
NexusExplorer应助言希采纳,获得10
2秒前
zjh完成签到,获得积分10
2秒前
小米粥完成签到,获得积分10
3秒前
Maxpan发布了新的文献求助10
4秒前
4秒前
JamesPei应助xiaoqi采纳,获得10
4秒前
善学以致用应助yonglong采纳,获得10
4秒前
小蘑菇应助费老三采纳,获得10
5秒前
5秒前
6秒前
厚朴发布了新的文献求助200
6秒前
无花果应助光亮的楼房采纳,获得10
6秒前
哈哈发布了新的文献求助10
6秒前
顺利兰发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
8秒前
wuha完成签到,获得积分10
9秒前
9秒前
9秒前
Lee完成签到,获得积分10
10秒前
10秒前
挺喜欢你发布了新的文献求助30
10秒前
焕丫头完成签到,获得积分10
11秒前
11秒前
zzz发布了新的文献求助10
11秒前
轻松青文发布了新的文献求助10
12秒前
神勇的剑愁完成签到,获得积分10
12秒前
水云间发布了新的文献求助10
12秒前
12秒前
明理可愁发布了新的文献求助10
13秒前
Lucas应助YLJ1994采纳,获得10
13秒前
13秒前
无私念瑶完成签到,获得积分10
14秒前
14秒前
14秒前
小马甲应助端庄的冰之采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522770
求助须知:如何正确求助?哪些是违规求助? 3103775
关于积分的说明 9267140
捐赠科研通 2800323
什么是DOI,文献DOI怎么找? 1536921
邀请新用户注册赠送积分活动 715217
科研通“疑难数据库(出版商)”最低求助积分说明 708692