已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Continuous missing data imputation with incomplete dataset by generative adversarial networks–based unsupervised learning for long-term bridge health monitoring

计算机科学 稳健性(进化) 生成语法 结构健康监测 缺少数据 插补(统计学) 机器学习 人工智能 数据挖掘 生成对抗网络 深度学习 工程类 生物化学 结构工程 基因 化学
作者
Haotian Jiang,Chunfeng Wan,Kang Yang,Youliang Ding,Shengjun Xue
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:21 (3): 1093-1109 被引量:36
标识
DOI:10.1177/14759217211021942
摘要

Wireless sensors are the key components of structural health monitoring systems. During the signal transmission, sensor failure is inevitable, among which, data loss is the most common type. Missing data problem poses a huge challenge to the consequent damage detection and condition assessment, and therefore, great importance should be attached. Conventional missing data imputation basically adopts the correlation-based method, especially for strain monitoring data. However, such methods often require delicate model selection, and the correlations for vehicle-induced strains are much harder to be captured compared with temperature-induced strains. In this article, a novel data-driven generative adversarial network (GAN) for imputing missing strain response is proposed. As opposed to traditional ways where correlations for inter-strains are explicitly modeled, the proposed method directly imputes the missing data considering the spatial–temporal relationships with other strain sensors based on the remaining observed data. Furthermore, the intact and complete dataset is not even necessary during the training process, which shows another great superiority over the model-based imputation method. The proposed method is implemented and verified on a real concrete bridge. In order to demonstrate the applicability and robustness of the GAN, imputation for single and multiple sensors is studied. Results show the proposed method provides an excellent performance of imputation accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静幻枫应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
彭于晏应助嘤嘤采纳,获得20
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
安静幻枫应助科研通管家采纳,获得20
3秒前
Albert-WR应助科研通管家采纳,获得10
4秒前
安静幻枫应助科研通管家采纳,获得20
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
涨芝士完成签到 ,获得积分10
4秒前
czy完成签到 ,获得积分10
12秒前
Believe完成签到,获得积分20
14秒前
wsh完成签到 ,获得积分10
15秒前
StephenLuffy发布了新的文献求助10
20秒前
英俊的铭应助Believe采纳,获得10
21秒前
nav完成签到 ,获得积分10
22秒前
风趣过客完成签到,获得积分10
23秒前
Tina完成签到,获得积分20
23秒前
ding应助小点点采纳,获得10
23秒前
Akim应助信仰g采纳,获得10
25秒前
kerry完成签到,获得积分10
26秒前
Abmony完成签到,获得积分10
26秒前
Noel应助Abmony采纳,获得10
31秒前
34秒前
35秒前
可乐完成签到,获得积分10
35秒前
36秒前
xqq完成签到,获得积分10
37秒前
Sir_M发布了新的文献求助10
39秒前
39秒前
40秒前
信仰g发布了新的文献求助10
42秒前
Believe发布了新的文献求助10
44秒前
Wei完成签到 ,获得积分10
44秒前
小点点发布了新的文献求助10
47秒前
动听的安寒完成签到 ,获得积分10
48秒前
jesusmanu完成签到,获得积分10
52秒前
艾森豪威尔完成签到 ,获得积分10
55秒前
plant完成签到,获得积分10
55秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056391
求助须知:如何正确求助?哪些是违规求助? 2713013
关于积分的说明 7434137
捐赠科研通 2357966
什么是DOI,文献DOI怎么找? 1249173
科研通“疑难数据库(出版商)”最低求助积分说明 606972
版权声明 596195