Unsupervised domain adaptation based on cluster matching and Fisher criterion for image classification

分类器(UML) 质心 判别式 子空间拓扑 模式识别(心理学) 人工智能 计算机科学 匹配(统计) 领域(数学分析) 杠杆(统计) 域适应 数据挖掘 数学 统计 数学分析
作者
Heyou Chang,Fanlong Zhang,Shuai Ma,Guangwei Gao,Hao Zheng,Yang Chen
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:91: 107041-107041 被引量:11
标识
DOI:10.1016/j.compeleceng.2021.107041
摘要

Transferring knowledge learned from a labeled domain (source domain) to an unlabeled domain (target domain) is challenging when the two domains have different distributions. The key to the problem is to reduce the distribution shift between the two domains. To align the distributions, most existing works first learn a classifier on the source domain to obtain pseud-labels for target samples, then calculate the target domain distribution based on the pseud-labels. However, the classifier may not meet the target domain because it loses sight of the target distribution during the learning procedure. The mislabeled samples will cause large errors in the calculation of the target domain distribution. To address this issue, we propose a novel method, named cluster matching and Fisher criterion (CMFC), to generate an accurate pseudo-label for each target sample in a latent discriminative subspace by considering both domain distributions. Specifically, we first cluster the samples in both domains, respectively, in the latent subspace and then match the cluster centroid in the target domain with the class centroid in the source domain. Both domain distributions are taken into consideration via cluster matching to assign more accurate pseud-labels. Moreover, we leverage the Fisher criterion to minimize intra-class variances while maximizing inter-class variances, which is conducive to further reducing the distribution shift. We incorporate cluster matching and the Fisher criterion into a united model and design an ADMM algorithm to effectively solve the proposed method. Extensive experiments on five datasets for classification tasks demonstrate the superiority of CMFC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
爱吃的肥虾完成签到,获得积分10
5秒前
5秒前
hilm应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
6秒前
TaoTaooooII完成签到,获得积分10
6秒前
将将将应助科研通管家采纳,获得10
6秒前
6秒前
将将将应助科研通管家采纳,获得10
6秒前
6秒前
hey完成签到,获得积分10
6秒前
7秒前
五月天完成签到,获得积分10
7秒前
斯文的老虎完成签到,获得积分10
8秒前
10秒前
李不乐完成签到,获得积分10
16秒前
老野猫完成签到 ,获得积分10
21秒前
26秒前
seven完成签到,获得积分10
26秒前
雪梅完成签到 ,获得积分10
27秒前
李沐唅完成签到,获得积分10
27秒前
40873完成签到 ,获得积分10
28秒前
33秒前
36秒前
ww完成签到,获得积分10
37秒前
Jeamren完成签到,获得积分10
39秒前
诺796完成签到,获得积分10
43秒前
马路完成签到,获得积分10
46秒前
wll1091完成签到 ,获得积分10
46秒前
陌上俨然完成签到,获得积分10
47秒前
老八完成签到,获得积分10
59秒前
ves完成签到,获得积分10
1分钟前
z!完成签到 ,获得积分10
1分钟前
研友_nongdalyl完成签到,获得积分10
1分钟前
yyyyj完成签到,获得积分20
1分钟前
黄志平完成签到 ,获得积分10
1分钟前
1分钟前
无辜紫菜完成签到,获得积分10
1分钟前
壮观的冰双完成签到,获得积分10
1分钟前
KONG完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465567
求助须知:如何正确求助?哪些是违规求助? 4569829
关于积分的说明 14321219
捐赠科研通 4496303
什么是DOI,文献DOI怎么找? 2463217
邀请新用户注册赠送积分活动 1452179
关于科研通互助平台的介绍 1427369