亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised domain adaptation based on cluster matching and Fisher criterion for image classification

分类器(UML) 质心 判别式 子空间拓扑 模式识别(心理学) 人工智能 计算机科学 匹配(统计) 领域(数学分析) 杠杆(统计) 域适应 数据挖掘 数学 统计 数学分析
作者
Heyou Chang,Fanlong Zhang,Shuai Ma,Guangwei Gao,Hao Zheng,Yang Chen
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:91: 107041-107041 被引量:11
标识
DOI:10.1016/j.compeleceng.2021.107041
摘要

Transferring knowledge learned from a labeled domain (source domain) to an unlabeled domain (target domain) is challenging when the two domains have different distributions. The key to the problem is to reduce the distribution shift between the two domains. To align the distributions, most existing works first learn a classifier on the source domain to obtain pseud-labels for target samples, then calculate the target domain distribution based on the pseud-labels. However, the classifier may not meet the target domain because it loses sight of the target distribution during the learning procedure. The mislabeled samples will cause large errors in the calculation of the target domain distribution. To address this issue, we propose a novel method, named cluster matching and Fisher criterion (CMFC), to generate an accurate pseudo-label for each target sample in a latent discriminative subspace by considering both domain distributions. Specifically, we first cluster the samples in both domains, respectively, in the latent subspace and then match the cluster centroid in the target domain with the class centroid in the source domain. Both domain distributions are taken into consideration via cluster matching to assign more accurate pseud-labels. Moreover, we leverage the Fisher criterion to minimize intra-class variances while maximizing inter-class variances, which is conducive to further reducing the distribution shift. We incorporate cluster matching and the Fisher criterion into a united model and design an ADMM algorithm to effectively solve the proposed method. Extensive experiments on five datasets for classification tasks demonstrate the superiority of CMFC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
16秒前
寻道图强应助科研通管家采纳,获得50
22秒前
Jasper应助诉与山风听采纳,获得10
25秒前
Tree_QD完成签到 ,获得积分10
25秒前
CMUSK完成签到,获得积分10
26秒前
1分钟前
yang发布了新的文献求助10
1分钟前
优美香露发布了新的文献求助10
1分钟前
研友_VZG7GZ应助优美香露采纳,获得30
1分钟前
1分钟前
2分钟前
Carol发布了新的文献求助10
2分钟前
2分钟前
2分钟前
优美香露发布了新的文献求助30
2分钟前
善学以致用应助优美香露采纳,获得30
2分钟前
2分钟前
ajing发布了新的文献求助10
2分钟前
2分钟前
2分钟前
zwang688完成签到,获得积分10
3分钟前
OCDer发布了新的文献求助10
3分钟前
3分钟前
yang发布了新的文献求助10
3分钟前
OCDer完成签到,获得积分0
3分钟前
3分钟前
Zima发布了新的文献求助10
3分钟前
Zima完成签到,获得积分10
4分钟前
年轻绮波完成签到,获得积分10
4分钟前
4分钟前
4分钟前
jianglan完成签到,获得积分10
4分钟前
4分钟前
jason完成签到 ,获得积分10
4分钟前
4分钟前
刻苦的小土豆完成签到 ,获得积分10
5分钟前
香蕉觅云应助如意修洁采纳,获得10
5分钟前
雨jia完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657952
求助须知:如何正确求助?哪些是违规求助? 4815338
关于积分的说明 15080712
捐赠科研通 4816255
什么是DOI,文献DOI怎么找? 2577211
邀请新用户注册赠送积分活动 1532242
关于科研通互助平台的介绍 1490814