Confidence-Based Design Optimization for a More Conservative Optimum Under Surrogate Model Uncertainty Caused by Gaussian Process

替代模型 不确定度量化 可靠性(半导体) 不确定度分析 克里金 元建模 计算机科学 数学优化 置信区间 高斯过程 过程(计算) 工程设计过程 敏感性分析 高斯分布 可靠性工程 数学 统计 工程类 机器学习 模拟 物理 操作系统 功率(物理) 机械工程 量子力学 程序设计语言
作者
Yongsu Jung,Kyeonghwan Kang,Hyunkyoo Cho,Ikjin Lee
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:143 (9) 被引量:24
标识
DOI:10.1115/1.4049883
摘要

Abstract Even though many efforts have been devoted to effective strategies to build accurate surrogate models, surrogate model uncertainty is inevitable due to a limited number of available simulation samples. Therefore, the surrogate model uncertainty, one of the epistemic uncertainties in reliability-based design optimization (RBDO), has to be considered during the design process to prevent unexpected failure of a system that stems from an inaccurate surrogate model. However, there have been limited attempts to obtain a reliable optimum taking into account the surrogate model uncertainty due to its complexity and computational burden. Thus, this paper proposes a confidence-based design optimization (CBDO) under surrogate model uncertainty to find a conservative optimum despite an insufficient number of simulation samples. To compensate the surrogate model uncertainty in reliability analysis, the confidence of reliability is brought to describe the uncertainty of reliability. The proposed method employs the Gaussian process modeling to explicitly quantify the uncertainty of a surrogate model. Thus, metamodel-based importance sampling and expansion optimal linear estimation are exploited to reduce the computational burden on confidence estimation. In addition, stochastic sensitivity analysis of the confidence is developed for CBDO, which is formulated to find a conservative optimum than an RBDO optimum at a specific confidence level. Numerical examples using mathematical functions and finite element analysis show that the proposed confidence analysis and CBDO can prevent overestimation of reliability caused by an inaccurate surrogate model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
沈坤完成签到,获得积分10
1秒前
1秒前
木虫完成签到,获得积分10
2秒前
魚纾完成签到,获得积分10
2秒前
3秒前
3秒前
1213应助难过白易采纳,获得20
3秒前
3秒前
beikou发布了新的文献求助10
4秒前
syfsyfsyf发布了新的文献求助10
4秒前
茶茶完成签到,获得积分10
4秒前
曾经念真应助tongtongtong采纳,获得10
4秒前
Robe发布了新的文献求助10
4秒前
无糖气泡水完成签到,获得积分10
5秒前
lucky发布了新的文献求助10
5秒前
罗山柳完成签到,获得积分10
5秒前
合适水杯完成签到,获得积分10
5秒前
haha发布了新的文献求助10
5秒前
善学以致用应助刘果果采纳,获得10
6秒前
6秒前
儒雅致远发布了新的文献求助10
6秒前
可爱的函函应助朴实山兰采纳,获得10
6秒前
6秒前
九五七a发布了新的文献求助200
6秒前
pipishi完成签到 ,获得积分10
6秒前
旅程发布了新的文献求助10
7秒前
阿欣完成签到,获得积分10
7秒前
YY发布了新的文献求助10
7秒前
8秒前
怕孤单的丁真完成签到,获得积分10
8秒前
yx_cheng应助sunsold采纳,获得30
8秒前
huangninghuang完成签到,获得积分10
9秒前
鱼跃完成签到,获得积分10
9秒前
研友_nvGWwZ发布了新的文献求助10
9秒前
10秒前
10秒前
鳗鱼盼夏完成签到,获得积分10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582