An interpretable 1D convolutional neural network for detecting patient-ventilator asynchrony in mechanical ventilation

可解释性 深度学习 计算机科学 人工智能 卷积神经网络 通风(建筑) 桥接(联网) 人工神经网络 模式识别(心理学) 工程类 计算机网络 机械工程
作者
Qing Pan,Lingwei Zhang,Mengzhe Jia,Jie Pan,Qiang Gong,Yunfei Lu,Zhongheng Zhang,Huiqing Ge,Luping Fang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:204: 106057-106057 被引量:30
标识
DOI:10.1016/j.cmpb.2021.106057
摘要

• Detection of PVA in mechanical ventilation by 1D-CNN model. • First effort to interpret deep learning based PVA classification results. • Have a significant speed advantage over the LSTM model. Patient-ventilator asynchrony (PVA) is the result of a mismatch between the need of patients and the assistance provided by the ventilator during mechanical ventilation. Because the poor interaction between the patient and the ventilator is associated with inferior clinical outcomes, effort should be made to identify and correct their occurrence. Deep learning has shown promising ability in PVA detection; however, lack of network interpretability hampers its application in clinic. We proposed an interpretable one-dimensional convolutional neural network (1DCNN) to detect four most manifestation types of PVA (double triggering, ineffective efforts during expiration, premature cycling and delayed cycling) under pressure control ventilation mode and pressure support ventilation mode. A global average pooling (GAP) layer was incorporated with the 1DCNN model to highlight the sections of the respiratory waveform the model focused on when making a classification. Dilation convolution and batch normalization were introduced to the 1DCNN model for compensating the reduction of performance caused by the GAP layer. The proposed interpretable 1DCNN exhibited comparable performance with the state-of-the-art deep learning model in PVA detection. The F1 scores for the detection of four types of PVA under pressure control ventilation and pressure support ventilation modes were greater than 0.96. The critical sections of the waveform used to detect PVA were highlighted, and found to be well consistent with the understanding of the respective type of PVA by experts. The findings suggest that the proposed 1DCNN can help detect PVA, and enhance the interpretability of the classification process to help clinicians better understand the results obtained from deep learning technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
loki发布了新的文献求助10
刚刚
科研通AI2S应助Alen采纳,获得10
1秒前
清清甜应助星川采纳,获得10
1秒前
3秒前
5秒前
深情安青应助徐嘎嘎采纳,获得10
6秒前
77发布了新的文献求助10
7秒前
田様应助嗯哼哈哈采纳,获得10
7秒前
7秒前
碧蓝的幻梦完成签到,获得积分10
7秒前
8秒前
期刊完成签到,获得积分0
8秒前
科研通AI2S应助wao采纳,获得10
8秒前
希望天下0贩的0应助熙熙采纳,获得10
8秒前
liuxingyu发布了新的文献求助10
9秒前
10秒前
10秒前
灰灰发布了新的文献求助10
11秒前
song发布了新的文献求助10
12秒前
lan199623发布了新的文献求助10
12秒前
kikiwani完成签到,获得积分10
13秒前
13秒前
脑洞疼应助Fang Xianxin采纳,获得10
13秒前
腰果虾仁完成签到 ,获得积分10
14秒前
日尧关注了科研通微信公众号
14秒前
螃螃发布了新的文献求助10
16秒前
传奇3应助石页采纳,获得10
17秒前
qqq关注了科研通微信公众号
17秒前
18秒前
20秒前
song完成签到,获得积分20
20秒前
21秒前
21秒前
刘佳佳完成签到 ,获得积分10
21秒前
狼叔爱吃小蓝莓完成签到 ,获得积分10
21秒前
22秒前
无名完成签到,获得积分10
22秒前
VPN不好用完成签到,获得积分10
23秒前
23秒前
木木完成签到 ,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4024340
求助须知:如何正确求助?哪些是违规求助? 3564210
关于积分的说明 11344678
捐赠科研通 3295369
什么是DOI,文献DOI怎么找? 1815104
邀请新用户注册赠送积分活动 889673
科研通“疑难数据库(出版商)”最低求助积分说明 813097