An interpretable 1D convolutional neural network for detecting patient-ventilator asynchrony in mechanical ventilation

可解释性 深度学习 计算机科学 人工智能 卷积神经网络 通风(建筑) 规范化(社会学) 桥接(联网) 机械通风 模式识别(心理学) 医学 工程类 麻醉 社会学 人类学 机械工程 计算机网络
作者
Qing Pan,Lingwei Zhang,Mengzhe Jia,Jie Pan,Qiang Gong,Yunfei Lu,Zhongheng Zhang,Huiqing Ge,Luping Fang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:204: 106057-106057 被引量:9
标识
DOI:10.1016/j.cmpb.2021.106057
摘要

• Detection of PVA in mechanical ventilation by 1D-CNN model. • First effort to interpret deep learning based PVA classification results. • Have a significant speed advantage over the LSTM model. Patient-ventilator asynchrony (PVA) is the result of a mismatch between the need of patients and the assistance provided by the ventilator during mechanical ventilation. Because the poor interaction between the patient and the ventilator is associated with inferior clinical outcomes, effort should be made to identify and correct their occurrence. Deep learning has shown promising ability in PVA detection; however, lack of network interpretability hampers its application in clinic. We proposed an interpretable one-dimensional convolutional neural network (1DCNN) to detect four most manifestation types of PVA (double triggering, ineffective efforts during expiration, premature cycling and delayed cycling) under pressure control ventilation mode and pressure support ventilation mode. A global average pooling (GAP) layer was incorporated with the 1DCNN model to highlight the sections of the respiratory waveform the model focused on when making a classification. Dilation convolution and batch normalization were introduced to the 1DCNN model for compensating the reduction of performance caused by the GAP layer. The proposed interpretable 1DCNN exhibited comparable performance with the state-of-the-art deep learning model in PVA detection. The F1 scores for the detection of four types of PVA under pressure control ventilation and pressure support ventilation modes were greater than 0.96. The critical sections of the waveform used to detect PVA were highlighted, and found to be well consistent with the understanding of the respective type of PVA by experts. The findings suggest that the proposed 1DCNN can help detect PVA, and enhance the interpretability of the classification process to help clinicians better understand the results obtained from deep learning technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋黄苏发布了新的文献求助10
1秒前
Owen应助lili采纳,获得10
1秒前
共享精神应助sun采纳,获得10
2秒前
雪白的翠梅完成签到 ,获得积分10
2秒前
zhouchen发布了新的文献求助10
3秒前
Silverexile完成签到,获得积分10
3秒前
xin完成签到,获得积分10
3秒前
暴躁的梦桃完成签到,获得积分10
4秒前
欣慰小蕊完成签到,获得积分10
4秒前
4秒前
Accepted应助故意的怜晴采纳,获得10
5秒前
5秒前
小马甲应助qu蛐采纳,获得10
5秒前
FireNow完成签到 ,获得积分10
5秒前
幸运星发布了新的文献求助10
5秒前
灵零完成签到,获得积分10
6秒前
6秒前
香蕉觅云应助xin采纳,获得10
6秒前
饼藏完成签到,获得积分10
7秒前
工大机械完成签到,获得积分10
7秒前
Orange应助dspan采纳,获得10
7秒前
7秒前
小学猹完成签到,获得积分10
8秒前
影子完成签到,获得积分20
8秒前
小马甲应助123669采纳,获得10
9秒前
可研发布了新的文献求助10
9秒前
9秒前
9秒前
研友_Z1xNWn完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
苦雨完成签到,获得积分10
10秒前
调研昵称发布了新的文献求助10
11秒前
ccc完成签到,获得积分10
11秒前
11秒前
英俊的铭应助危机的雨梅采纳,获得10
12秒前
Ava应助yjzzz采纳,获得10
13秒前
合一海盗完成签到,获得积分10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167605
求助须知:如何正确求助?哪些是违规求助? 2819067
关于积分的说明 7924710
捐赠科研通 2478949
什么是DOI,文献DOI怎么找? 1320553
科研通“疑难数据库(出版商)”最低求助积分说明 632821
版权声明 602443