清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An interpretable 1D convolutional neural network for detecting patient-ventilator asynchrony in mechanical ventilation

可解释性 深度学习 计算机科学 人工智能 卷积神经网络 通风(建筑) 桥接(联网) 人工神经网络 模式识别(心理学) 工程类 计算机网络 机械工程
作者
Qing Pan,Lingwei Zhang,Mengzhe Jia,Jie Pan,Qiang Gong,Yunfei Lu,Zhongheng Zhang,Huiqing Ge,Luping Fang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:204: 106057-106057 被引量:30
标识
DOI:10.1016/j.cmpb.2021.106057
摘要

• Detection of PVA in mechanical ventilation by 1D-CNN model. • First effort to interpret deep learning based PVA classification results. • Have a significant speed advantage over the LSTM model. Patient-ventilator asynchrony (PVA) is the result of a mismatch between the need of patients and the assistance provided by the ventilator during mechanical ventilation. Because the poor interaction between the patient and the ventilator is associated with inferior clinical outcomes, effort should be made to identify and correct their occurrence. Deep learning has shown promising ability in PVA detection; however, lack of network interpretability hampers its application in clinic. We proposed an interpretable one-dimensional convolutional neural network (1DCNN) to detect four most manifestation types of PVA (double triggering, ineffective efforts during expiration, premature cycling and delayed cycling) under pressure control ventilation mode and pressure support ventilation mode. A global average pooling (GAP) layer was incorporated with the 1DCNN model to highlight the sections of the respiratory waveform the model focused on when making a classification. Dilation convolution and batch normalization were introduced to the 1DCNN model for compensating the reduction of performance caused by the GAP layer. The proposed interpretable 1DCNN exhibited comparable performance with the state-of-the-art deep learning model in PVA detection. The F1 scores for the detection of four types of PVA under pressure control ventilation and pressure support ventilation modes were greater than 0.96. The critical sections of the waveform used to detect PVA were highlighted, and found to be well consistent with the understanding of the respective type of PVA by experts. The findings suggest that the proposed 1DCNN can help detect PVA, and enhance the interpretability of the classification process to help clinicians better understand the results obtained from deep learning technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
10秒前
13秒前
俺不中了完成签到,获得积分10
1分钟前
1分钟前
1分钟前
柴yuki完成签到 ,获得积分10
1分钟前
trophozoite完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
寻找组织完成签到,获得积分10
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
2分钟前
ljyyy发布了新的文献求助10
2分钟前
ljyyy完成签到,获得积分10
2分钟前
3分钟前
3分钟前
皮皮虾发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
研友_VZG7GZ应助皮皮虾采纳,获得10
3分钟前
3分钟前
失眠思远发布了新的文献求助10
3分钟前
vbnn完成签到 ,获得积分10
3分钟前
尼古拉耶维奇完成签到 ,获得积分10
4分钟前
披着羊皮的狼完成签到 ,获得积分10
5分钟前
Chouvikin完成签到,获得积分10
5分钟前
5分钟前
皮皮虾发布了新的文献求助10
5分钟前
ding应助阿兹采纳,获得10
5分钟前
皮皮虾完成签到,获得积分20
5分钟前
激动的似狮完成签到,获得积分10
6分钟前
赘婿应助皮皮虾采纳,获得10
6分钟前
酷波er应助紫津采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
紫津发布了新的文献求助10
6分钟前
苒苒完成签到,获得积分10
6分钟前
来活发布了新的文献求助10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078710
求助须知:如何正确求助?哪些是违规求助? 4297355
关于积分的说明 13388083
捐赠科研通 4120179
什么是DOI,文献DOI怎么找? 2256466
邀请新用户注册赠送积分活动 1260734
关于科研通互助平台的介绍 1194538