Synergetic application of E-tongue and E-eye based on deep learning to discrimination of Pu-erh tea storage time

人工智能 卷积神经网络 计算机科学 深度学习 模式识别(心理学) 人工神经网络 分类器(UML) 特征提取 超参数 反向传播 机器学习
作者
Zhengwei Yang,Jiyong Gao,Shoucheng Wang,Zhiqiang Wang,Caihong Li,Yubin Lan,Xia Sun,Shengxi Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:187: 106297-106297 被引量:30
标识
DOI:10.1016/j.compag.2021.106297
摘要

This study proposed an efficient approach that an electronic tongue (ET) and an electronic eye (EE) combined with a deep learning algorithm were jointly leveraged to recognition Pu-erh tea. A one-dimensional convolutional neural network (1-D CNN) and a two-dimensional convolutional neural network (2-D CNN) were designed and optimized for the feature extraction of ET and EE signals, respectively. Then, a feature-level fusion strategy was introduced to address the feature vectors extracted from the different types of CNN models. To highlight the effect of data fusion, a backpropagation neural network (BPNN), a classifier similar to the fully connected layers of CNN models, was employed. Meanwhile, the Bayesian optimization algorithm (BOA) was employed for hyperparameter optimization of the identification models. The experimental results showed that the feature fusion strategy assimilated the merits of the ET and EE and gained better Pu-erh tea identification performance than an independent intelligent sensory system combined with CNN model. The results demonstrate that the feature-level fusion based on deep learning algorithm gained the best accuracy on the test set, with a precision, a recall, an F1-score and an AUC score of 99.07%, 99.2%, 0.992 and 0.994, respectively. This study shows that the simultaneous utilization of an ET and an EE combined with deep learning algorithm could function as a rapid detection method for discriminating the storage time of Pu-erh tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shuo0976发布了新的文献求助10
刚刚
阿华甜发布了新的文献求助10
1秒前
JamesPei应助TKTK采纳,获得30
1秒前
1秒前
leec完成签到,获得积分10
1秒前
2秒前
5秒前
5秒前
wxyz发布了新的文献求助10
7秒前
7秒前
科研通AI6.1应助mo采纳,获得10
9秒前
怕黑灰狼完成签到,获得积分20
9秒前
星辰大海应助等月光采纳,获得10
10秒前
景仰发布了新的文献求助10
11秒前
Liz1054完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
科研通AI6.1应助ssss采纳,获得80
14秒前
shuo0976完成签到,获得积分10
14秒前
16秒前
水灵灵发布了新的文献求助10
16秒前
是咸鱼呀完成签到,获得积分10
16秒前
椿人发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
Delire完成签到,获得积分10
19秒前
19秒前
蓝心语发布了新的文献求助10
20秒前
21秒前
白羊完成签到 ,获得积分20
21秒前
21秒前
niu发布了新的文献求助10
21秒前
Zz完成签到 ,获得积分10
21秒前
22秒前
24秒前
7ruthpooooog完成签到,获得积分10
24秒前
25秒前
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5744919
求助须知:如何正确求助?哪些是违规求助? 5422454
关于积分的说明 15351164
捐赠科研通 4885051
什么是DOI,文献DOI怎么找? 2626325
邀请新用户注册赠送积分活动 1575064
关于科研通互助平台的介绍 1531838