Synergetic application of E-tongue and E-eye based on deep learning to discrimination of Pu-erh tea storage time

人工智能 卷积神经网络 计算机科学 深度学习 模式识别(心理学) 人工神经网络 分类器(UML) 特征提取 超参数 反向传播 机器学习
作者
Zhengwei Yang,Jiyong Gao,Shoucheng Wang,Zhiqiang Wang,Caihong Li,Yubin Lan,Xia Sun,Shengxi Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:187: 106297-106297 被引量:30
标识
DOI:10.1016/j.compag.2021.106297
摘要

This study proposed an efficient approach that an electronic tongue (ET) and an electronic eye (EE) combined with a deep learning algorithm were jointly leveraged to recognition Pu-erh tea. A one-dimensional convolutional neural network (1-D CNN) and a two-dimensional convolutional neural network (2-D CNN) were designed and optimized for the feature extraction of ET and EE signals, respectively. Then, a feature-level fusion strategy was introduced to address the feature vectors extracted from the different types of CNN models. To highlight the effect of data fusion, a backpropagation neural network (BPNN), a classifier similar to the fully connected layers of CNN models, was employed. Meanwhile, the Bayesian optimization algorithm (BOA) was employed for hyperparameter optimization of the identification models. The experimental results showed that the feature fusion strategy assimilated the merits of the ET and EE and gained better Pu-erh tea identification performance than an independent intelligent sensory system combined with CNN model. The results demonstrate that the feature-level fusion based on deep learning algorithm gained the best accuracy on the test set, with a precision, a recall, an F1-score and an AUC score of 99.07%, 99.2%, 0.992 and 0.994, respectively. This study shows that the simultaneous utilization of an ET and an EE combined with deep learning algorithm could function as a rapid detection method for discriminating the storage time of Pu-erh tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
3秒前
3秒前
智库关注了科研通微信公众号
3秒前
追寻的莺完成签到,获得积分10
4秒前
5秒前
Owen应助夏夜晚风采纳,获得10
5秒前
赵婧秀发布了新的文献求助30
7秒前
123333发布了新的文献求助10
7秒前
Lucas应助HK采纳,获得10
7秒前
8秒前
徐徐图之发布了新的文献求助10
8秒前
在水一方应助xx采纳,获得10
9秒前
wwlllzzttt发布了新的文献求助10
9秒前
豆儿嘚小豆儿应助yuziiii采纳,获得100
9秒前
不要慌完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
科研通AI6.1应助Sheldon采纳,获得10
10秒前
思源应助团子采纳,获得10
11秒前
light完成签到,获得积分10
12秒前
支妙发布了新的文献求助10
13秒前
14秒前
123333完成签到,获得积分20
14秒前
郭郭盖过完成签到,获得积分10
15秒前
15秒前
15秒前
元气马完成签到 ,获得积分10
16秒前
秋夜白完成签到,获得积分10
17秒前
不安desu完成签到,获得积分10
18秒前
Gstar完成签到,获得积分10
18秒前
19秒前
知性的藏鸟完成签到 ,获得积分10
19秒前
20秒前
21秒前
塔塔应助Evall采纳,获得10
21秒前
852应助Bonnie采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770023
求助须知:如何正确求助?哪些是违规求助? 5582550
关于积分的说明 15423156
捐赠科研通 4903584
什么是DOI,文献DOI怎么找? 2638255
邀请新用户注册赠送积分活动 1586124
关于科研通互助平台的介绍 1541285