Synergetic application of E-tongue and E-eye based on deep learning to discrimination of Pu-erh tea storage time

人工智能 卷积神经网络 计算机科学 深度学习 模式识别(心理学) 人工神经网络 分类器(UML) 特征提取 超参数 反向传播 机器学习
作者
Zhengwei Yang,Jiyong Gao,Shoucheng Wang,Zhiqiang Wang,Caihong Li,Yubin Lan,Xia Sun,Shengxi Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:187: 106297-106297 被引量:21
标识
DOI:10.1016/j.compag.2021.106297
摘要

This study proposed an efficient approach that an electronic tongue (ET) and an electronic eye (EE) combined with a deep learning algorithm were jointly leveraged to recognition Pu-erh tea. A one-dimensional convolutional neural network (1-D CNN) and a two-dimensional convolutional neural network (2-D CNN) were designed and optimized for the feature extraction of ET and EE signals, respectively. Then, a feature-level fusion strategy was introduced to address the feature vectors extracted from the different types of CNN models. To highlight the effect of data fusion, a backpropagation neural network (BPNN), a classifier similar to the fully connected layers of CNN models, was employed. Meanwhile, the Bayesian optimization algorithm (BOA) was employed for hyperparameter optimization of the identification models. The experimental results showed that the feature fusion strategy assimilated the merits of the ET and EE and gained better Pu-erh tea identification performance than an independent intelligent sensory system combined with CNN model. The results demonstrate that the feature-level fusion based on deep learning algorithm gained the best accuracy on the test set, with a precision, a recall, an F1-score and an AUC score of 99.07%, 99.2%, 0.992 and 0.994, respectively. This study shows that the simultaneous utilization of an ET and an EE combined with deep learning algorithm could function as a rapid detection method for discriminating the storage time of Pu-erh tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zho应助666采纳,获得10
1秒前
echo发布了新的文献求助10
2秒前
2秒前
Green完成签到,获得积分10
3秒前
研友_ZGDVz8完成签到,获得积分10
3秒前
3秒前
4秒前
mxy完成签到,获得积分20
5秒前
6秒前
小二郎应助luwanqing采纳,获得30
6秒前
西红柿炒番茄应助小橙子采纳,获得30
6秒前
李恩乐完成签到,获得积分10
7秒前
9秒前
GG酱发布了新的文献求助10
9秒前
11秒前
zty568发布了新的文献求助10
12秒前
14秒前
14秒前
NK.cell完成签到,获得积分10
15秒前
16秒前
ican驳回了情怀应助
16秒前
立青发布了新的文献求助10
17秒前
wangzai111发布了新的文献求助30
17秒前
Li完成签到,获得积分10
17秒前
NK.cell发布了新的文献求助10
18秒前
单薄谷秋完成签到,获得积分10
18秒前
19秒前
20秒前
波安班完成签到,获得积分10
20秒前
李健的小迷弟应助wh采纳,获得10
21秒前
22秒前
咸粥发布了新的文献求助20
22秒前
苗修杰完成签到,获得积分10
23秒前
darsting11发布了新的文献求助20
23秒前
波安班发布了新的文献求助10
23秒前
离言完成签到,获得积分10
23秒前
SciGPT应助立青采纳,获得10
23秒前
科研通AI2S应助chrysan采纳,获得10
23秒前
ABB完成签到,获得积分10
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157189
求助须知:如何正确求助?哪些是违规求助? 2808483
关于积分的说明 7877835
捐赠科研通 2467029
什么是DOI,文献DOI怎么找? 1313118
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919