Synergetic application of E-tongue and E-eye based on deep learning to discrimination of Pu-erh tea storage time

人工智能 卷积神经网络 计算机科学 深度学习 模式识别(心理学) 人工神经网络 分类器(UML) 特征提取 超参数 反向传播 机器学习
作者
Zhengwei Yang,Jiyong Gao,Shoucheng Wang,Zhiqiang Wang,Caihong Li,Yubin Lan,Xia Sun,Shengxi Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:187: 106297-106297 被引量:30
标识
DOI:10.1016/j.compag.2021.106297
摘要

This study proposed an efficient approach that an electronic tongue (ET) and an electronic eye (EE) combined with a deep learning algorithm were jointly leveraged to recognition Pu-erh tea. A one-dimensional convolutional neural network (1-D CNN) and a two-dimensional convolutional neural network (2-D CNN) were designed and optimized for the feature extraction of ET and EE signals, respectively. Then, a feature-level fusion strategy was introduced to address the feature vectors extracted from the different types of CNN models. To highlight the effect of data fusion, a backpropagation neural network (BPNN), a classifier similar to the fully connected layers of CNN models, was employed. Meanwhile, the Bayesian optimization algorithm (BOA) was employed for hyperparameter optimization of the identification models. The experimental results showed that the feature fusion strategy assimilated the merits of the ET and EE and gained better Pu-erh tea identification performance than an independent intelligent sensory system combined with CNN model. The results demonstrate that the feature-level fusion based on deep learning algorithm gained the best accuracy on the test set, with a precision, a recall, an F1-score and an AUC score of 99.07%, 99.2%, 0.992 and 0.994, respectively. This study shows that the simultaneous utilization of an ET and an EE combined with deep learning algorithm could function as a rapid detection method for discriminating the storage time of Pu-erh tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助平淡糖豆采纳,获得10
刚刚
负责的井发布了新的文献求助10
刚刚
loppy发布了新的文献求助10
刚刚
领导范儿应助开心的行云采纳,获得10
刚刚
刚刚
Thestar完成签到,获得积分10
1秒前
1秒前
redamancy完成签到 ,获得积分10
1秒前
晴天完成签到,获得积分10
1秒前
2秒前
fyjlfy完成签到 ,获得积分10
2秒前
2秒前
hux完成签到,获得积分10
2秒前
2秒前
2秒前
Harden完成签到,获得积分10
2秒前
阿翔完成签到,获得积分10
2秒前
郭敬一完成签到,获得积分10
2秒前
昔颜完成签到,获得积分10
3秒前
mang发布了新的文献求助10
3秒前
受伤幻桃发布了新的文献求助10
3秒前
4秒前
4秒前
candy完成签到,获得积分10
4秒前
4秒前
眯眯眼的板栗完成签到,获得积分10
4秒前
奋斗灵珊发布了新的文献求助10
4秒前
全或无完成签到,获得积分10
5秒前
万能图书馆应助aaaaa采纳,获得10
5秒前
5秒前
Willwzh完成签到,获得积分10
5秒前
STDRM完成签到,获得积分10
5秒前
缺月挂疏桐完成签到,获得积分10
5秒前
iro完成签到 ,获得积分10
6秒前
牧云发布了新的文献求助10
6秒前
普鲁卡因发布了新的文献求助10
6秒前
懵懂的随阴完成签到,获得积分10
6秒前
桐桐应助唧唧采纳,获得10
6秒前
海的呼唤发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997