Synergetic application of E-tongue and E-eye based on deep learning to discrimination of Pu-erh tea storage time

人工智能 卷积神经网络 计算机科学 深度学习 模式识别(心理学) 人工神经网络 分类器(UML) 特征提取 超参数 反向传播 机器学习
作者
Zhengwei Yang,Jiyong Gao,Shoucheng Wang,Zhiqiang Wang,Caihong Li,Yubin Lan,Xia Sun,Shengxi Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:187: 106297-106297 被引量:23
标识
DOI:10.1016/j.compag.2021.106297
摘要

This study proposed an efficient approach that an electronic tongue (ET) and an electronic eye (EE) combined with a deep learning algorithm were jointly leveraged to recognition Pu-erh tea. A one-dimensional convolutional neural network (1-D CNN) and a two-dimensional convolutional neural network (2-D CNN) were designed and optimized for the feature extraction of ET and EE signals, respectively. Then, a feature-level fusion strategy was introduced to address the feature vectors extracted from the different types of CNN models. To highlight the effect of data fusion, a backpropagation neural network (BPNN), a classifier similar to the fully connected layers of CNN models, was employed. Meanwhile, the Bayesian optimization algorithm (BOA) was employed for hyperparameter optimization of the identification models. The experimental results showed that the feature fusion strategy assimilated the merits of the ET and EE and gained better Pu-erh tea identification performance than an independent intelligent sensory system combined with CNN model. The results demonstrate that the feature-level fusion based on deep learning algorithm gained the best accuracy on the test set, with a precision, a recall, an F1-score and an AUC score of 99.07%, 99.2%, 0.992 and 0.994, respectively. This study shows that the simultaneous utilization of an ET and an EE combined with deep learning algorithm could function as a rapid detection method for discriminating the storage time of Pu-erh tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中心湖小海棠完成签到,获得积分10
刚刚
旦丁洋发布了新的文献求助10
1秒前
1秒前
超帅的天曼完成签到,获得积分10
1秒前
落月铭发布了新的文献求助10
1秒前
最蠢的讨厌鬼完成签到,获得积分10
2秒前
飘逸烨华完成签到,获得积分10
3秒前
4秒前
4秒前
北落完成签到 ,获得积分20
4秒前
5秒前
钱大大发布了新的文献求助10
5秒前
lily完成签到,获得积分10
5秒前
逸之狐应助最蠢的讨厌鬼采纳,获得20
5秒前
Lemon完成签到,获得积分10
6秒前
万能图书馆应助王雯雯采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
云朵发布了新的文献求助10
9秒前
小慕斯发布了新的文献求助10
9秒前
在水一方应助sunsaint采纳,获得10
10秒前
10秒前
11秒前
yyyhhh发布了新的文献求助10
11秒前
12秒前
111完成签到,获得积分20
12秒前
13秒前
殷启维发布了新的文献求助10
13秒前
李怼怼完成签到,获得积分10
13秒前
jjj应助小慕斯采纳,获得10
14秒前
郜郜嗳发布了新的文献求助30
14秒前
酷波er应助小慕斯采纳,获得10
14秒前
善学以致用应助小慕斯采纳,获得10
14秒前
Ava应助小慕斯采纳,获得10
14秒前
赫幼蓉发布了新的文献求助10
15秒前
ssslls发布了新的文献求助10
15秒前
细心秀发发布了新的文献求助10
15秒前
Lucas应助乐观的一一采纳,获得10
15秒前
爱笑的凡之完成签到,获得积分20
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958929
求助须知:如何正确求助?哪些是违规求助? 3505199
关于积分的说明 11122925
捐赠科研通 3236708
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871444
科研通“疑难数据库(出版商)”最低求助积分说明 802794