Probabilistic Model-Based Learning Control of a Soft Pneumatic Glove for Hand Rehabilitation

康复 概率逻辑 计算机科学 冲程(发动机) 手势 物理医学与康复 会话(web分析) 人工智能 人机交互 模拟 机器学习 工程类 物理疗法 医学 万维网 机械工程
作者
Zhi Qiang Tang,Ho Lam Heung,Xiang Qian Shi,Kai-Yu Tong,Zheng Li
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (2): 1016-1028 被引量:15
标识
DOI:10.1109/tbme.2021.3111891
摘要

Objective: Stroke survivors are usually unable to perform activities of daily living (ADL) independently due to loss of hand functions. Soft pneumatic gloves provide a promising assistance approach for stroke survivors to conduct ADL tasks. However, few studies have explored effective control strategies for the ‘human-soft robot’ integrated system due to challenges in the nonlinearities of soft robots and uncertainties of human intentions. Therefore, this work aims to develop control approaches for the system to improve stroke survivors’ hand functions. Methods: Firstly, a soft pneumatic glove was utilized to aid with stroke-impaired hands. Secondly, a probabilistic model-based learning control approach was proposed to overcome the challenges. Then a task-oriented intention-driven training modality was designed. Finally, the control performance was evaluated on three able-bodied subjects and three stroke survivors who attended 20-session rehabilitation training. Results: The proposed approach could enable the soft pneumatic glove to provide adaptive assistance for all participants to accomplish different tasks. The tracking error and muscle co-contraction index showed decreasing trends while the hand gesture index showed an increasing tendency over training sessions. All stroke survivors showed improved hand functions and better muscle coordinations after training. Conclusion: This work developed a learning-based soft robotic glove training system and demonstrated its potential in post-stroke hand rehabilitation. Significance: This work promotes the application of soft robotic training systems in stroke rehabilitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanwan应助心理学小五采纳,获得10
2秒前
幸运鱼完成签到,获得积分10
2秒前
医学小王完成签到 ,获得积分10
3秒前
3秒前
4秒前
Ted完成签到,获得积分10
5秒前
FIN应助幸运鱼采纳,获得30
6秒前
骆一锅发布了新的文献求助10
6秒前
7秒前
鸭梨发布了新的文献求助10
7秒前
7秒前
7秒前
想见你发布了新的文献求助10
9秒前
梁晓玲完成签到,获得积分10
9秒前
Ava应助1111采纳,获得10
10秒前
wanwan应助大热热采纳,获得10
10秒前
nako7575发布了新的文献求助10
10秒前
NARUTO完成签到 ,获得积分10
11秒前
刘佳欣发布了新的文献求助10
11秒前
何瑷君完成签到,获得积分10
11秒前
桐桐应助小只采纳,获得10
12秒前
ding应助达达尼尔采纳,获得10
12秒前
12秒前
momomo应助灰底爆米花采纳,获得10
12秒前
坦率的匪应助魔幻稀采纳,获得10
12秒前
积极寻雪发布了新的文献求助10
13秒前
14秒前
14秒前
uss完成签到,获得积分10
15秒前
SYX完成签到 ,获得积分10
15秒前
mpenny77发布了新的文献求助10
16秒前
16秒前
认真的青柠完成签到,获得积分10
18秒前
18秒前
yuan发布了新的文献求助10
18秒前
贰鸟应助drtianyunhong采纳,获得10
19秒前
19秒前
19秒前
林三一完成签到,获得积分10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425