Probabilistic Model-Based Learning Control of a Soft Pneumatic Glove for Hand Rehabilitation

康复 概率逻辑 计算机科学 冲程(发动机) 手势 物理医学与康复 会话(web分析) 人工智能 人机交互 模拟 机器学习 工程类 物理疗法 医学 万维网 机械工程
作者
Zhi Qiang Tang,Ho Lam Heung,Xiang Qian Shi,Kai-Yu Tong,Zheng Li
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (2): 1016-1028 被引量:15
标识
DOI:10.1109/tbme.2021.3111891
摘要

Objective: Stroke survivors are usually unable to perform activities of daily living (ADL) independently due to loss of hand functions. Soft pneumatic gloves provide a promising assistance approach for stroke survivors to conduct ADL tasks. However, few studies have explored effective control strategies for the ‘human-soft robot’ integrated system due to challenges in the nonlinearities of soft robots and uncertainties of human intentions. Therefore, this work aims to develop control approaches for the system to improve stroke survivors’ hand functions. Methods: Firstly, a soft pneumatic glove was utilized to aid with stroke-impaired hands. Secondly, a probabilistic model-based learning control approach was proposed to overcome the challenges. Then a task-oriented intention-driven training modality was designed. Finally, the control performance was evaluated on three able-bodied subjects and three stroke survivors who attended 20-session rehabilitation training. Results: The proposed approach could enable the soft pneumatic glove to provide adaptive assistance for all participants to accomplish different tasks. The tracking error and muscle co-contraction index showed decreasing trends while the hand gesture index showed an increasing tendency over training sessions. All stroke survivors showed improved hand functions and better muscle coordinations after training. Conclusion: This work developed a learning-based soft robotic glove training system and demonstrated its potential in post-stroke hand rehabilitation. Significance: This work promotes the application of soft robotic training systems in stroke rehabilitation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
anzhe完成签到,获得积分10
5秒前
CallMeIris完成签到,获得积分10
9秒前
苹果尔柳发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
尹基忠完成签到 ,获得积分10
13秒前
infer1024完成签到 ,获得积分10
14秒前
潜行者完成签到 ,获得积分10
15秒前
16秒前
歇洛克发布了新的文献求助10
19秒前
chemzhh完成签到,获得积分10
24秒前
灵巧的朝雪完成签到 ,获得积分10
24秒前
细心的代天完成签到 ,获得积分10
24秒前
老马哥完成签到 ,获得积分0
24秒前
顺心寄容完成签到,获得积分10
25秒前
李新颖完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
29秒前
乐乐应助yscjlxw547采纳,获得10
30秒前
上官完成签到 ,获得积分10
34秒前
mzhang2完成签到 ,获得积分10
35秒前
糊里糊涂完成签到 ,获得积分10
36秒前
391X小king给391X小king的求助进行了留言
37秒前
打打应助oscar采纳,获得10
39秒前
谨慎翎完成签到 ,获得积分10
40秒前
然来溪完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
42秒前
点点完成签到 ,获得积分10
43秒前
46秒前
50秒前
Able发布了新的文献求助10
50秒前
阿烨完成签到,获得积分10
50秒前
52秒前
江江完成签到 ,获得积分10
52秒前
科研绝技完成签到,获得积分10
53秒前
yscjlxw547完成签到,获得积分10
57秒前
Able完成签到,获得积分10
1分钟前
田甜甜完成签到 ,获得积分10
1分钟前
负责的流沙完成签到 ,获得积分10
1分钟前
ccc完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645089
求助须知:如何正确求助?哪些是违规求助? 4767716
关于积分的说明 15026372
捐赠科研通 4803503
什么是DOI,文献DOI怎么找? 2568340
邀请新用户注册赠送积分活动 1525697
关于科研通互助平台的介绍 1485301