Information fusion oriented heterogeneous social network for friend recommendation via community detection

计算机科学 微博 相似性(几何) 社会化媒体 社交网络(社会语言学) 协同过滤 信息过载 集合(抽象数据类型) 推荐系统 情报检索 数据挖掘 人工智能 机器学习 万维网 图像(数学) 程序设计语言
作者
Jin-Jian Lu,Qingshan Jiang,Qiang Qu,Lei Chen,H. S. Chen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:114: 108103-108103 被引量:5
标识
DOI:10.1016/j.asoc.2021.108103
摘要

The rapid advance of online social networks and the tremendous growth in the number of participants and attention have led to information overload and increased the difficulty of making accurate recommendations of new friends. Existing recommendation methods based on semantic similarity, social graphs, or collaborative filtering are unsuitable for very large social networks because of their high computational cost or low effectiveness. We present an approach entitled H ybrid R ecommendation T hrough C ommunity D etection (HRTCD) for friend prediction with linear runtime complexity that makes full use of the characteristics of social media based on hybrid information fusion. It extracts the content topics of microblog for each participant along with the appraisal of domain-dependent user impact, builds a small-size heterogeneous network for each target user by fusing the interest similarity and social interaction between individuals, discovers all of the implicit clusters of target user via a community detection algorithm, and establishes the recommendation set consisting of a fixed number of potential friends. Experimental results on both the synthetic and real-world social networks demonstrate that our scheme provides a higher prediction rating and significantly improves the recommendation accuracy and offers much faster performance. • An approach with linear time complexity based on hybrid information fusion for friend recommendation is presented. • The interest similarity and social interaction between users are taken into consideration through organic fusion. • A small-size heterogeneous network consisting of almost all potential candidates is constructed for each target user. • Recommended friends are extracted from different clusters to coincide with the personal interests and social circles. • Experimental results on a mass of social networks illustrate the higher effectiveness and efficiency of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮虫完成签到,获得积分10
1秒前
1秒前
池鱼应助搞怪的婴采纳,获得30
1秒前
思源应助欧皇降玲采纳,获得10
2秒前
3秒前
YY完成签到,获得积分10
3秒前
3秒前
4秒前
poppy发布了新的文献求助10
4秒前
嘻嘻哈哈小鱼完成签到,获得积分10
5秒前
6秒前
Genius发布了新的文献求助10
6秒前
Pepsi完成签到,获得积分10
6秒前
孙欣莹发布了新的文献求助10
7秒前
ding应助xdlongchem采纳,获得10
8秒前
上官若男应助优秀的方盒采纳,获得10
8秒前
bkagyin应助Aurora采纳,获得10
9秒前
MS903发布了新的文献求助10
10秒前
西门发发发布了新的文献求助10
10秒前
liwei完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
15秒前
zhou完成签到 ,获得积分10
16秒前
wang完成签到,获得积分10
17秒前
ylin发布了新的文献求助10
17秒前
烟花应助含羞草采纳,获得10
18秒前
SciGPT应助西门发发采纳,获得10
18秒前
小鹏同学发布了新的文献求助10
18秒前
yajoyce完成签到,获得积分10
19秒前
小二郎应助msk采纳,获得10
19秒前
你是人间四月天完成签到,获得积分10
20秒前
20秒前
21秒前
星辰大海应助优秀的方盒采纳,获得10
21秒前
21秒前
华仔应助solkatt采纳,获得10
23秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577420
求助须知:如何正确求助?哪些是违规求助? 4662595
关于积分的说明 14742430
捐赠科研通 4603236
什么是DOI,文献DOI怎么找? 2526219
邀请新用户注册赠送积分活动 1496045
关于科研通互助平台的介绍 1465527