Information fusion oriented heterogeneous social network for friend recommendation via community detection

计算机科学 微博 相似性(几何) 社会化媒体 社交网络(社会语言学) 协同过滤 信息过载 集合(抽象数据类型) 推荐系统 情报检索 数据挖掘 人工智能 机器学习 万维网 图像(数学) 程序设计语言
作者
Jin-Jian Lu,Qingshan Jiang,Qiang Qu,Lei Chen,H. S. Chen
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:114: 108103-108103 被引量:5
标识
DOI:10.1016/j.asoc.2021.108103
摘要

The rapid advance of online social networks and the tremendous growth in the number of participants and attention have led to information overload and increased the difficulty of making accurate recommendations of new friends. Existing recommendation methods based on semantic similarity, social graphs, or collaborative filtering are unsuitable for very large social networks because of their high computational cost or low effectiveness. We present an approach entitled H ybrid R ecommendation T hrough C ommunity D etection (HRTCD) for friend prediction with linear runtime complexity that makes full use of the characteristics of social media based on hybrid information fusion. It extracts the content topics of microblog for each participant along with the appraisal of domain-dependent user impact, builds a small-size heterogeneous network for each target user by fusing the interest similarity and social interaction between individuals, discovers all of the implicit clusters of target user via a community detection algorithm, and establishes the recommendation set consisting of a fixed number of potential friends. Experimental results on both the synthetic and real-world social networks demonstrate that our scheme provides a higher prediction rating and significantly improves the recommendation accuracy and offers much faster performance. • An approach with linear time complexity based on hybrid information fusion for friend recommendation is presented. • The interest similarity and social interaction between users are taken into consideration through organic fusion. • A small-size heterogeneous network consisting of almost all potential candidates is constructed for each target user. • Recommended friends are extracted from different clusters to coincide with the personal interests and social circles. • Experimental results on a mass of social networks illustrate the higher effectiveness and efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanyanyan完成签到,获得积分10
刚刚
小杨同学完成签到,获得积分10
刚刚
zhanghan完成签到,获得积分10
刚刚
巴乔完成签到,获得积分10
1秒前
Sea完成签到,获得积分10
1秒前
虞雪儿儿完成签到 ,获得积分10
1秒前
2秒前
白白发布了新的文献求助10
3秒前
4秒前
开心完成签到 ,获得积分10
4秒前
王京华完成签到,获得积分10
4秒前
安安应助hhh2018687采纳,获得30
4秒前
等待的航空完成签到 ,获得积分10
5秒前
yirenli完成签到,获得积分10
5秒前
5秒前
冲冲冲完成签到 ,获得积分10
5秒前
小雨转晴完成签到,获得积分10
6秒前
6秒前
daying完成签到,获得积分10
6秒前
SQL完成签到 ,获得积分10
8秒前
小雨转晴发布了新的文献求助10
8秒前
孟子发布了新的文献求助10
9秒前
ying完成签到,获得积分10
9秒前
Twikky完成签到,获得积分10
10秒前
压缩完成签到 ,获得积分10
10秒前
丫丫完成签到,获得积分10
11秒前
林曳完成签到 ,获得积分10
12秒前
小斌应助白白采纳,获得10
12秒前
小斌应助白白采纳,获得10
12秒前
英姑应助白白采纳,获得10
12秒前
开心的茗茗完成签到 ,获得积分10
12秒前
科目三应助平常馒头采纳,获得30
13秒前
逍遥呱呱完成签到 ,获得积分10
14秒前
吕凯强完成签到 ,获得积分10
14秒前
听说发布了新的文献求助10
15秒前
exosome完成签到,获得积分10
15秒前
XCYIN完成签到,获得积分10
15秒前
火星上芹菜完成签到,获得积分10
16秒前
科目三应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725519
求助须知:如何正确求助?哪些是违规求助? 3270445
关于积分的说明 9965924
捐赠科研通 2985491
什么是DOI,文献DOI怎么找? 1638024
邀请新用户注册赠送积分活动 777792
科研通“疑难数据库(出版商)”最低求助积分说明 747261