Information fusion oriented heterogeneous social network for friend recommendation via community detection

计算机科学 微博 相似性(几何) 社会化媒体 社交网络(社会语言学) 协同过滤 信息过载 集合(抽象数据类型) 推荐系统 情报检索 数据挖掘 人工智能 机器学习 万维网 图像(数学) 程序设计语言
作者
Jin-Jian Lu,Qingshan Jiang,Qiang Qu,Lei Chen,H. S. Chen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:114: 108103-108103 被引量:5
标识
DOI:10.1016/j.asoc.2021.108103
摘要

The rapid advance of online social networks and the tremendous growth in the number of participants and attention have led to information overload and increased the difficulty of making accurate recommendations of new friends. Existing recommendation methods based on semantic similarity, social graphs, or collaborative filtering are unsuitable for very large social networks because of their high computational cost or low effectiveness. We present an approach entitled H ybrid R ecommendation T hrough C ommunity D etection (HRTCD) for friend prediction with linear runtime complexity that makes full use of the characteristics of social media based on hybrid information fusion. It extracts the content topics of microblog for each participant along with the appraisal of domain-dependent user impact, builds a small-size heterogeneous network for each target user by fusing the interest similarity and social interaction between individuals, discovers all of the implicit clusters of target user via a community detection algorithm, and establishes the recommendation set consisting of a fixed number of potential friends. Experimental results on both the synthetic and real-world social networks demonstrate that our scheme provides a higher prediction rating and significantly improves the recommendation accuracy and offers much faster performance. • An approach with linear time complexity based on hybrid information fusion for friend recommendation is presented. • The interest similarity and social interaction between users are taken into consideration through organic fusion. • A small-size heterogeneous network consisting of almost all potential candidates is constructed for each target user. • Recommended friends are extracted from different clusters to coincide with the personal interests and social circles. • Experimental results on a mass of social networks illustrate the higher effectiveness and efficiency of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梓树发布了新的文献求助10
1秒前
彭于晏应助喜喜不嘻嘻采纳,获得10
1秒前
故槿完成签到 ,获得积分10
2秒前
乙未发布了新的文献求助10
3秒前
3秒前
大模型应助honey采纳,获得10
3秒前
HY发布了新的文献求助10
3秒前
4秒前
模糊老师完成签到,获得积分10
5秒前
5秒前
碧霄完成签到,获得积分10
6秒前
沉默的瑞宝完成签到 ,获得积分10
6秒前
Adam_Lan完成签到,获得积分10
6秒前
顾矜应助明理的帆布鞋采纳,获得10
7秒前
7秒前
乐乐应助乙未采纳,获得10
8秒前
Hello应助儒雅致远采纳,获得10
9秒前
lalalal发布了新的文献求助10
9秒前
10秒前
轨迹应助嘿嘿采纳,获得10
10秒前
Decline发布了新的文献求助10
10秒前
大胆的映萱关注了科研通微信公众号
10秒前
GYR完成签到,获得积分10
11秒前
刘小蕊完成签到,获得积分10
11秒前
花木兰发布了新的文献求助10
11秒前
yuaner发布了新的文献求助10
11秒前
HY完成签到,获得积分10
11秒前
hxh完成签到,获得积分10
12秒前
12秒前
ccc发布了新的文献求助10
13秒前
13秒前
14秒前
xixi发布了新的文献求助10
14秒前
隐形曼青应助嘻嘻采纳,获得10
14秒前
汉堡包应助Adam_Lan采纳,获得10
15秒前
15秒前
15秒前
16秒前
16秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167