Information fusion oriented heterogeneous social network for friend recommendation via community detection

计算机科学 微博 相似性(几何) 社会化媒体 社交网络(社会语言学) 协同过滤 信息过载 集合(抽象数据类型) 推荐系统 情报检索 数据挖掘 人工智能 机器学习 万维网 图像(数学) 程序设计语言
作者
Jin-Jian Lu,Qingshan Jiang,Qiang Qu,Lei Chen,H. S. Chen
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:114: 108103-108103 被引量:5
标识
DOI:10.1016/j.asoc.2021.108103
摘要

The rapid advance of online social networks and the tremendous growth in the number of participants and attention have led to information overload and increased the difficulty of making accurate recommendations of new friends. Existing recommendation methods based on semantic similarity, social graphs, or collaborative filtering are unsuitable for very large social networks because of their high computational cost or low effectiveness. We present an approach entitled H ybrid R ecommendation T hrough C ommunity D etection (HRTCD) for friend prediction with linear runtime complexity that makes full use of the characteristics of social media based on hybrid information fusion. It extracts the content topics of microblog for each participant along with the appraisal of domain-dependent user impact, builds a small-size heterogeneous network for each target user by fusing the interest similarity and social interaction between individuals, discovers all of the implicit clusters of target user via a community detection algorithm, and establishes the recommendation set consisting of a fixed number of potential friends. Experimental results on both the synthetic and real-world social networks demonstrate that our scheme provides a higher prediction rating and significantly improves the recommendation accuracy and offers much faster performance. • An approach with linear time complexity based on hybrid information fusion for friend recommendation is presented. • The interest similarity and social interaction between users are taken into consideration through organic fusion. • A small-size heterogeneous network consisting of almost all potential candidates is constructed for each target user. • Recommended friends are extracted from different clusters to coincide with the personal interests and social circles. • Experimental results on a mass of social networks illustrate the higher effectiveness and efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助smy采纳,获得10
刚刚
欢呼平蓝完成签到,获得积分10
刚刚
朱欣宇发布了新的文献求助10
1秒前
1秒前
1秒前
木木康发布了新的文献求助10
1秒前
戏言121发布了新的文献求助10
2秒前
zhu完成签到,获得积分20
3秒前
3秒前
时尚俊驰发布了新的文献求助30
3秒前
SYLH应助wjx采纳,获得10
3秒前
小于要毕业完成签到,获得积分10
4秒前
赘婿应助zhu采纳,获得10
4秒前
饶文卓应助and999采纳,获得10
5秒前
三水发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助kjh采纳,获得30
6秒前
Bean完成签到,获得积分10
6秒前
yang发布了新的文献求助10
6秒前
甄的艾你发布了新的文献求助10
7秒前
乐乐乐乐乐乐应助111采纳,获得30
7秒前
李x完成签到,获得积分10
7秒前
林心儿发布了新的文献求助10
8秒前
8秒前
嘻嘻发布了新的文献求助10
8秒前
hhhhhh应助阿米尔采纳,获得20
8秒前
完美世界应助木木康采纳,获得10
8秒前
Zoe完成签到,获得积分10
9秒前
瞿冷之发布了新的文献求助40
9秒前
10秒前
毛毛完成签到,获得积分10
10秒前
bee完成签到 ,获得积分10
10秒前
ED应助马不停蹄采纳,获得10
10秒前
不安的大白菜真实的钥匙完成签到,获得积分10
11秒前
莫宝发布了新的文献求助10
11秒前
爆米花应助乐哉采纳,获得10
11秒前
11秒前
远不止这些完成签到,获得积分10
11秒前
十个勤天完成签到,获得积分10
12秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009487
求助须知:如何正确求助?哪些是违规求助? 3549466
关于积分的说明 11302335
捐赠科研通 3284069
什么是DOI,文献DOI怎么找? 1810464
邀请新用户注册赠送积分活动 886301
科研通“疑难数据库(出版商)”最低求助积分说明 811339