亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Information fusion oriented heterogeneous social network for friend recommendation via community detection

计算机科学 微博 相似性(几何) 社会化媒体 社交网络(社会语言学) 协同过滤 信息过载 集合(抽象数据类型) 推荐系统 情报检索 数据挖掘 人工智能 机器学习 万维网 图像(数学) 程序设计语言
作者
Jin-Jian Lu,Qingshan Jiang,Qiang Qu,Lei Chen,H. S. Chen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:114: 108103-108103 被引量:5
标识
DOI:10.1016/j.asoc.2021.108103
摘要

The rapid advance of online social networks and the tremendous growth in the number of participants and attention have led to information overload and increased the difficulty of making accurate recommendations of new friends. Existing recommendation methods based on semantic similarity, social graphs, or collaborative filtering are unsuitable for very large social networks because of their high computational cost or low effectiveness. We present an approach entitled H ybrid R ecommendation T hrough C ommunity D etection (HRTCD) for friend prediction with linear runtime complexity that makes full use of the characteristics of social media based on hybrid information fusion. It extracts the content topics of microblog for each participant along with the appraisal of domain-dependent user impact, builds a small-size heterogeneous network for each target user by fusing the interest similarity and social interaction between individuals, discovers all of the implicit clusters of target user via a community detection algorithm, and establishes the recommendation set consisting of a fixed number of potential friends. Experimental results on both the synthetic and real-world social networks demonstrate that our scheme provides a higher prediction rating and significantly improves the recommendation accuracy and offers much faster performance. • An approach with linear time complexity based on hybrid information fusion for friend recommendation is presented. • The interest similarity and social interaction between users are taken into consideration through organic fusion. • A small-size heterogeneous network consisting of almost all potential candidates is constructed for each target user. • Recommended friends are extracted from different clusters to coincide with the personal interests and social circles. • Experimental results on a mass of social networks illustrate the higher effectiveness and efficiency of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12345发布了新的文献求助30
2秒前
科研通AI6.1应助XMH采纳,获得10
4秒前
25秒前
33秒前
浮游漂漂应助Karol采纳,获得10
36秒前
可爱花瓣完成签到,获得积分10
38秒前
40秒前
43秒前
47秒前
50秒前
53秒前
酷酷的大米完成签到,获得积分10
54秒前
Lebpom发布了新的文献求助10
55秒前
1分钟前
馒头发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
所所应助Lebpom采纳,获得30
1分钟前
快乐芷荷完成签到 ,获得积分10
1分钟前
CipherSage应助动听的又亦采纳,获得10
1分钟前
英俊的铭应助LucyMartinez采纳,获得10
1分钟前
敬业乐群完成签到,获得积分10
1分钟前
1分钟前
1分钟前
LucyMartinez发布了新的文献求助10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
馒头完成签到,获得积分20
1分钟前
潇洒莞完成签到 ,获得积分10
1分钟前
1分钟前
Ava应助能力越小责任越小采纳,获得20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
默默善愁发布了新的文献求助10
2分钟前
Victory完成签到,获得积分10
2分钟前
yara完成签到 ,获得积分10
2分钟前
2分钟前
宇称yu完成签到 ,获得积分10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746620
求助须知:如何正确求助?哪些是违规求助? 5436547
关于积分的说明 15355678
捐赠科研通 4886645
什么是DOI,文献DOI怎么找? 2627324
邀请新用户注册赠送积分活动 1575809
关于科研通互助平台的介绍 1532565