Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach

无线电技术 流体衰减反转恢复 医学 逻辑回归 内科学 磁共振成像 核医学 肿瘤科 放射科
作者
Jun Suk Kim,Joungho Kim,Hyemin Jang,Jae-Ho Kim,Sung Kwon Kang,Ji-Eun Kim,Jongmin Lee,Duk L. Na,Hee Jin Kim,Sang Won Seo,Hyunjin Park
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:11 (1) 被引量:5
标识
DOI:10.1038/s41598-021-86114-4
摘要

Predicting amyloid positivity in patients with mild cognitive impairment (MCI) is crucial. In the present study, we predicted amyloid positivity with structural MRI using a radiomics approach. From MR images (including T1, T2 FLAIR, and DTI sequences) of 440 MCI patients, we extracted radiomics features composed of histogram and texture features. These features were used alone or in combination with baseline non-imaging predictors such as age, sex, and ApoE genotype to predict amyloid positivity. We used a regularized regression method for feature selection and prediction. The performance of the baseline non-imaging model was at a fair level (AUC = 0.71). Among single MR-sequence models, T1 and T2 FLAIR radiomics models also showed fair performances (AUC for test = 0.71-0.74, AUC for validation = 0.68-0.70) in predicting amyloid positivity. When T1 and T2 FLAIR radiomics features were combined, the AUC for test was 0.75 and AUC for validation was 0.72 (p vs. baseline model < 0.001). The model performed best when baseline features were combined with a T1 and T2 FLAIR radiomics model (AUC for test = 0.79, AUC for validation = 0.76), which was significantly better than those of the baseline model (p < 0.001) and the T1 + T2 FLAIR radiomics model (p < 0.001). In conclusion, radiomics features showed predictive value for amyloid positivity. It can be used in combination with other predictive features and possibly improve the prediction performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
一篇大paper完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
两袖清风发布了新的文献求助10
4秒前
菜菜泽发布了新的文献求助10
4秒前
8秒前
Nn1发布了新的文献求助10
8秒前
rykkk发布了新的文献求助10
8秒前
小刘发布了新的文献求助10
8秒前
9秒前
万能图书馆应助独特飞机采纳,获得10
9秒前
SciGPT应助卜学英采纳,获得10
10秒前
小马甲应助哭泣的宛丝采纳,获得10
10秒前
10秒前
深情安青应助酷炫的铸海采纳,获得10
11秒前
11秒前
yuon发布了新的文献求助10
12秒前
龙月完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助50
13秒前
14秒前
爆米花应助5433采纳,获得10
14秒前
李大锤发布了新的文献求助10
15秒前
16秒前
乐乐应助GGZ采纳,获得10
16秒前
明月清风发布了新的文献求助10
16秒前
教育厮完成签到,获得积分10
17秒前
硕大的肌肉完成签到,获得积分10
17秒前
18秒前
无花果应助GGZ采纳,获得10
20秒前
所所应助GGZ采纳,获得10
20秒前
汉堡包应助整齐千柳采纳,获得10
20秒前
20秒前
我是老大应助droke采纳,获得10
20秒前
mike_007发布了新的文献求助10
20秒前
Dr. Chen发布了新的文献求助10
21秒前
22秒前
shi发布了新的文献求助10
23秒前
眼圆广志完成签到,获得积分10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125515
求助须知:如何正确求助?哪些是违规求助? 4329288
关于积分的说明 13490854
捐赠科研通 4164202
什么是DOI,文献DOI怎么找? 2282786
邀请新用户注册赠送积分活动 1283874
关于科研通互助平台的介绍 1223196