Signal denoising of viral particle in wide-field photon scattering parametric images using deep learning

参数统计 光学 信号(编程语言) 光子 散射 领域(数学) 降噪 粒子(生态学) 深度学习 人工智能 计算机科学 物理 地质学 数学 统计 海洋学 纯数学 程序设计语言
作者
Hanwen Zhao,Bin Ni,Weiping Liu,Jin Xiao,Heng Zhang,Xiaohong Gao,Xuesong Wen,Daming Shi,Lei Dong,Jichuan Xiong,Xuefeng Liu
出处
期刊:Optics Communications [Elsevier BV]
卷期号:503: 127463-127463 被引量:1
标识
DOI:10.1016/j.optcom.2021.127463
摘要

Polarization parametric indirect microscopic imaging (PIMI) can obtain anisotropic nanoscale structural information of the sample by utilizing a polarization modulated illumination scheme and fitting the far-field variation of polarization states of the scattered photons. The rich scattering information of PIMI images can be exploited for identification of viral particles, aiming for early infection screening of viruses. Accurate processing and analysis of PIMI results is an important step for obtaining structural feature information of virus. However, the systematic noise, mainly caused by the mechanical or electrical disturbance from the modulation of the illumination when taking raw images, fairly degrades the image resolution and contrast, making the analysis of results more time-consuming with higher error rate. To achieve efficient noise suppressing in the obtained PIMI images, we developed a neural network-based framework of algorithms. A fairly effective denoising method particularly for PIMI imaging was proposed based on a U-Net. From both the numerical and experimental results, the developed method significantly improves the quality of PIMI images with the best capability of noise removal compared with the traditional denoising algorithms and other neural network architecture. This method can be employed as a fixed preprocessing procedure of raw PIMI images, which is greatly helpful to realize rapid, accurate and programmed analysis of results in PIMI applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sheart发布了新的文献求助10
1秒前
非哲发布了新的文献求助10
1秒前
翁怜晴发布了新的文献求助10
2秒前
yuan完成签到,获得积分10
2秒前
ldy发布了新的文献求助10
2秒前
田様应助Auh采纳,获得10
2秒前
3秒前
3秒前
搜集达人应助JABBA采纳,获得10
3秒前
宁宁完成签到,获得积分10
3秒前
bkagyin应助qwe采纳,获得10
3秒前
liu发布了新的文献求助10
3秒前
XiaoLiu应助Lee采纳,获得10
4秒前
4秒前
ydx发布了新的文献求助10
5秒前
5秒前
Akim应助yu采纳,获得10
5秒前
5秒前
6秒前
呆萌的傲旋关注了科研通微信公众号
6秒前
6秒前
小蘑菇应助点点采纳,获得10
8秒前
8秒前
8秒前
9秒前
XIA发布了新的文献求助20
9秒前
9秒前
英俊柠檬发布了新的文献求助10
9秒前
9秒前
lyy完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
慕青应助echoyao采纳,获得10
11秒前
lcx发布了新的文献求助10
12秒前
Akim应助qing1245采纳,获得10
12秒前
大个应助轻松不二采纳,获得10
12秒前
ccc发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562