Translational Aspects of the Mammalian Target of Rapamycin Complexes in Diabetic Nephropathy

自噬 氧化应激 糖尿病肾病 蛋白激酶B 信号转导 PI3K/AKT/mTOR通路 糖尿病 细胞生物学 生物 内分泌学 癌症研究 细胞凋亡 生物化学
作者
Alaa Abou Daher,Sahar Alkhansa,William S. Azar,Rim W. Rafeh,Hilda E. Ghadieh,Assaad A. Eid
出处
期刊:Antioxidants & Redox Signaling [Mary Ann Liebert]
卷期号:37 (10-12): 802-819 被引量:5
标识
DOI:10.1089/ars.2021.0217
摘要

Significance: Despite the many efforts put into understanding diabetic nephropathy (DN), direct treatments for DN have yet to be discovered. Understanding the mechanisms behind DN is an essential step in the development of novel therapeutic regimens. The mammalian target of rapamycin (mTOR) pathway has emerged as an important candidate in the quest for drug discovery because of its role in regulating growth, proliferation, as well as protein and lipid metabolism. Recent Advances: Kidney cells have been found to rely on basal autophagy for survival and for conserving kidney integrity. Recent studies have shown that diabetes induces renal autophagy deregulation, leading to kidney injury. Hyper-activation of the mTOR pathway and oxidative stress have been suggested to play a role in diabetes-induced autophagy imbalance. Critical Issues: A detailed understanding of the role of mTOR signaling in diabetes-associated complications is of major importance in the search for a cure. In this review, we provide evidence that mTOR is heavily implicated in diabetes-induced kidney injury. We suggest possible mechanisms through which mTOR exerts its negative effects by increasing insulin resistance, upregulating oxidative stress, and inhibiting autophagy. Future Directions: Both increased oxidative stress and autophagy deregulation are deeply embedded in DN. However, the mechanisms controlling oxidative stress and autophagy are not well understood. Although Akt/mTOR signaling seems to play an important role in oxidative stress and autophagy, further investigation is required to uncover the details of this signaling pathway. Antioxid. Redox Signal. 37, 802–819.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sherrinford完成签到,获得积分10
刚刚
万万想到了完成签到,获得积分10
刚刚
sam发布了新的文献求助100
1秒前
woshizy发布了新的文献求助10
1秒前
喜乐完成签到 ,获得积分10
1秒前
Yan发布了新的文献求助10
1秒前
2秒前
kk发布了新的文献求助10
2秒前
pero完成签到,获得积分10
3秒前
3秒前
4秒前
机智小猫咪完成签到,获得积分10
6秒前
9秒前
漂亮幻莲发布了新的文献求助10
9秒前
9秒前
调皮的毛豆关注了科研通微信公众号
9秒前
10秒前
10秒前
10秒前
12秒前
Jasper应助齐语风采纳,获得10
12秒前
枯叶蝶发布了新的文献求助10
13秒前
杳鸢给cookieMichael的求助进行了留言
14秒前
wanci应助飘逸晓曼采纳,获得10
14秒前
贼肉发布了新的文献求助10
14秒前
在水一方应助HonamC采纳,获得10
14秒前
14秒前
gaoxiaogao完成签到,获得积分10
14秒前
15秒前
16秒前
领导范儿应助Delia采纳,获得10
17秒前
life发布了新的文献求助10
17秒前
汉堡包应助yzqtf采纳,获得10
18秒前
18秒前
春困春困发布了新的文献求助10
18秒前
19秒前
林川发布了新的文献求助10
19秒前
20秒前
syl发布了新的文献求助30
21秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150225
求助须知:如何正确求助?哪些是违规求助? 2801322
关于积分的说明 7844073
捐赠科研通 2458853
什么是DOI,文献DOI怎么找? 1308673
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721