Development and Validation of a Radiomic Nomogram for Predicting the Prognosis of Kidney Renal Clear Cell Carcinoma

列线图 医学 单变量 肾细胞癌 多元统计 接收机工作特性 一致性 比例危险模型 肿瘤科 Lasso(编程语言) 多元分析 放射科 内科学 统计 计算机科学 数学 万维网
作者
Ruizhi Gao,Hui Qin,Peng Lin,Chenjun Ma,Chengyang Li,Rong Wen,Jing Huang,Da Wan,Dong‐yue Wen,Yiqiong Liang,Jiang Huang,Xin Li,Xinrong Wang,Gang Chen,Yun He,Hong Yang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:11
标识
DOI:10.3389/fonc.2021.613668
摘要

The present study aims to comprehensively investigate the prognostic value of a radiomic nomogram that integrates contrast-enhanced computed tomography (CECT) radiomic signature and clinicopathological parameters in kidney renal clear cell carcinoma (KIRC).A total of 136 and 78 KIRC patients from the training and validation cohorts were included in the retrospective study. The intraclass correlation coefficient (ICC) was used to assess reproducibility of radiomic feature extraction. Univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) as well as multivariate Cox analysis were utilized to construct radiomic signature and clinical signature in the training cohort. A prognostic nomogram was established containing a radiomic signature and clinicopathological parameters by using a multivariate Cox analysis. The predictive ability of the nomogram [relative operating characteristic curve (ROC), concordance index (C-index), Hosmer-Lemeshow test, and calibration curve] was evaluated in the training cohort and validated in the validation cohort. Patients were split into high- and low-risk groups, and the Kaplan-Meier (KM) method was conducted to identify the forecasting ability of the established models. In addition, genes related with the radiomic risk score were determined by weighted correlation network analysis (WGCNA) and were used to conduct functional analysis.A total of 2,944 radiomic features were acquired from the tumor volumes of interest (VOIs) of CECT images. The radiomic signature, including ten selected features, and the clinical signature, including three selected clinical variables, showed good performance in the training and validation cohorts [area under the curve (AUC), 0.897 and 0.712 for the radiomic signature; 0.827 and 0.822 for the clinical signature, respectively]. The radiomic prognostic nomogram showed favorable performance and calibration in the training cohort (AUC, 0.896, C-index, 0.846), which was verified in the validation cohort (AUC, 0.768). KM curves indicated that the progression-free interval (PFI) time was dramatically shorter in the high-risk group than in the low-risk group. The functional analysis indicated that radiomic signature was significantly associated with T cell activation.The nomogram combined with CECT radiomic and clinicopathological signatures exhibits excellent power in predicting the PFI of KIRC patients, which may aid in clinical management and prognostic evaluation of cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐观大雁发布了新的文献求助10
刚刚
FashionBoy应助如果采纳,获得10
1秒前
Hello应助枫叶采纳,获得10
2秒前
kkkrystal发布了新的文献求助10
3秒前
4秒前
轩辕剑身发布了新的文献求助10
5秒前
QQQW完成签到,获得积分10
5秒前
SciGPT应助xh采纳,获得10
6秒前
关清明完成签到,获得积分10
6秒前
Jenny发布了新的文献求助30
6秒前
未晞驳回了852应助
6秒前
6秒前
7秒前
所所应助乐观大雁采纳,获得10
7秒前
雪宝宝发布了新的文献求助30
7秒前
7秒前
aaaaa完成签到,获得积分10
8秒前
Likx完成签到,获得积分10
8秒前
10秒前
保持好心情应助霸气雅旋采纳,获得10
11秒前
科研小狗完成签到,获得积分20
11秒前
深情安青应助chitala采纳,获得10
11秒前
zhy发布了新的文献求助10
12秒前
夏时安完成签到,获得积分10
12秒前
13秒前
梦与叶落完成签到,获得积分10
14秒前
16秒前
16秒前
16秒前
FAN发布了新的文献求助100
17秒前
17秒前
猪猪hero发布了新的文献求助10
17秒前
雪宝宝完成签到,获得积分10
18秒前
HuanchuWang完成签到 ,获得积分10
18秒前
xh发布了新的文献求助10
18秒前
默默琳完成签到,获得积分10
19秒前
TYT发布了新的文献求助10
20秒前
20秒前
拉长的百褶裙完成签到,获得积分10
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482716
求助须知:如何正确求助?哪些是违规求助? 3072248
关于积分的说明 9126270
捐赠科研通 2764017
什么是DOI,文献DOI怎么找? 1516797
邀请新用户注册赠送积分活动 701779
科研通“疑难数据库(出版商)”最低求助积分说明 700639