已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of artificial neural network to forecast engine performance and emissions of a spark ignition engine

火花点火发动机 SPARK(编程语言) 人工神经网络 燃料效率 点火系统 平均有效压力 汽车工程 推力比油耗 计算机科学 模拟 工程类 内燃机 压缩比 机器学习 航空航天工程 程序设计语言
作者
Jiahong Fu,Ruomiao Yang,Xin Li,Xiaoxia Sun,Yong Li,Zhentao Liu,Yu Zhang,Bengt Sundén
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:201: 117749-117749 被引量:37
标识
DOI:10.1016/j.applthermaleng.2021.117749
摘要

Increasing the application of machine learning algorithms in engine development has the potential to reduce the number of experimental runs and the computation cost of computational fluid dynamics simulations. The objective of this study is to assess if such a statistical modelling approach can predict engine efficiency and emissions at any given condition for an already calibrated spark ignition (SI) engine. Engine responses at various engine speeds and load are recorded and used for correlative modelling. The artificial neural network (ANN) algorithm is utilized in this study, with engine speed and load as the model inputs, and fuel consumption and emission as the model outputs. The comparisons between experimentally measured data and model predictions indicate that the well-trained network is capable of forecasting engine efficiency, unburned hydrocarbons, carbon monoxide, and nitrogen oxide emissions with close-to-zero root mean squared error performance metric. In addition, the relatively small errors do not affect the relations between model inputs and outputs, as evidenced by the close-to-unity coefficient of determination. Overall, all these results indicate ANN model is appropriate for the application investigated in this study. Moreover, this study also suggests that the “black-box” modelling approach has the potential to effectively predict engine-related variables. And the predicted engine map can be used as a reference to accelerate the motor development in the hybrid vehicles. Also, the ANN model forecast the fuel consumption and emissions under transient operating conditions, while the literature is scarce to date on the investigation of the prediction of engine responses for transient conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小米完成签到,获得积分10
1秒前
5秒前
6秒前
NINGMENG完成签到 ,获得积分10
6秒前
7秒前
小学生完成签到,获得积分10
8秒前
OLIVIA完成签到,获得积分10
9秒前
旺仔发布了新的文献求助10
9秒前
10秒前
11秒前
慕青应助学术pig采纳,获得10
11秒前
12秒前
13秒前
微笑冰旋发布了新的文献求助10
14秒前
14秒前
STAR发布了新的文献求助10
18秒前
Ping发布了新的文献求助10
18秒前
健忘碧菡完成签到,获得积分10
18秒前
19秒前
22秒前
wang发布了新的文献求助10
24秒前
24秒前
25秒前
pzh完成签到 ,获得积分10
25秒前
学术pig完成签到,获得积分10
25秒前
幽默不愁发布了新的文献求助10
27秒前
yifan625完成签到 ,获得积分10
27秒前
学术pig发布了新的文献求助10
29秒前
乐乐应助TNNTDS采纳,获得10
29秒前
Akim应助奋斗的绝悟采纳,获得10
30秒前
WILD完成签到 ,获得积分10
30秒前
peterlee完成签到,获得积分10
32秒前
好运完成签到,获得积分10
32秒前
Hello应助STAR采纳,获得10
35秒前
35秒前
36秒前
好运发布了新的文献求助10
38秒前
wth发布了新的文献求助10
40秒前
充电宝应助在明理摸鱼采纳,获得10
40秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471262
求助须知:如何正确求助?哪些是违规求助? 3064158
关于积分的说明 9087696
捐赠科研通 2754957
什么是DOI,文献DOI怎么找? 1511673
邀请新用户注册赠送积分活动 698560
科研通“疑难数据库(出版商)”最低求助积分说明 698423