25‐4: Methodology and Correlation of AI‐Based Design for OLED Materials

有机发光二极管 发光 磷光 一致性(知识库) 计算机科学 多样性(控制论) 光电子学 材料设计 材料科学 荧光 纳米技术 物理 人工智能 光学 万维网 图层(电子)
作者
Joong‐Hwan Yang,Hyong-Jong Choi,Jae-Keon Bae,Soo-Young Lee,Gyu-Hyeong Kim,Tae-Yang Lee,Junho Lee,Chang-Wook Han,Ji‐Ho Baek,Hyun‐Chul Choi,Jeom‐Jae Kim,Soo‐Young Yoon
出处
期刊:Sid's Digest Of Technical Papers [Wiley]
卷期号:52 (1): 317-320 被引量:2
标识
DOI:10.1002/sdtp.14679
摘要

AI based design for OLED materials are being tried in a variety of ways. An exemplary system is being developed to predict optical characteristics through machine learning (ML) with existing data. Once the performance descriptor is well defined and the quantum chemical calculation method is established, AI‐reverse design is expected to be possible. However, not all OLED emitting materials are equally capable of it. Different approaches are needed because the luminescence mechanism and its complexity of calculation are different depending on the material types. For pure fluorescence or even high efficiency phosphorescence, their luminescence mechanisms are relatively well defined and nearly irreversible and so the correlation between the calculation and performance could be better. If so, the reverse design is becoming possible and already it has begun to be tried a lot. However, in the case of TADF, the radiation and non‐radiation paths vary, ISC‐RISC is more reversible, and the controversy over luminescence mechanism remains. As a result, the calculating method of luminous efficiency has not yet been fully established. In this study, we want to report the consistency level of predicting characteristics of OLED materials using AI, and also discuss the difference between each emitting material types for reverse design. In particular, we also want to share the issues of calculating methods for TADF performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动尔柳完成签到 ,获得积分20
刚刚
迟大猫应助鲤鱼白玉采纳,获得10
1秒前
3秒前
QIZH完成签到,获得积分10
3秒前
zhaole完成签到,获得积分20
3秒前
章鱼哥发布了新的文献求助10
4秒前
简单应助冬瓜炖排骨采纳,获得10
4秒前
5秒前
简单发布了新的文献求助10
5秒前
香蕉觅云应助白方明采纳,获得10
6秒前
6秒前
小马甲应助ZYL采纳,获得10
6秒前
现代皓轩完成签到,获得积分10
7秒前
zhaole发布了新的文献求助10
8秒前
9秒前
远方发布了新的文献求助10
10秒前
贰鸟应助大喜子采纳,获得10
10秒前
完美世界应助大喜子采纳,获得10
10秒前
共享精神应助ggbond采纳,获得10
10秒前
笨笨善若发布了新的文献求助10
11秒前
小蘑菇应助呵呵采纳,获得10
11秒前
12秒前
12秒前
12秒前
fa发布了新的文献求助10
13秒前
魔幻柜子应助Ari_Kun采纳,获得10
14秒前
吃水果的老虎完成签到,获得积分10
14秒前
而发的完成签到,获得积分10
15秒前
活力立诚完成签到,获得积分10
15秒前
聪聪发布了新的文献求助10
16秒前
tumbler完成签到 ,获得积分10
16秒前
KAKAZhang发布了新的文献求助10
16秒前
17秒前
17秒前
ding应助梨儿采纳,获得10
18秒前
西鱼发布了新的文献求助10
18秒前
Hello应助yy采纳,获得10
18秒前
19秒前
爆炸吧丶现充完成签到,获得积分10
19秒前
CipherSage应助痴情的小懒虫采纳,获得10
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490263
求助须知:如何正确求助?哪些是违规求助? 3077255
关于积分的说明 9148229
捐赠科研通 2769499
什么是DOI,文献DOI怎么找? 1519724
邀请新用户注册赠送积分活动 704238
科研通“疑难数据库(出版商)”最低求助积分说明 702113