Weakly Supervised Deep Ordinal Cox Model for Survival Prediction From Whole-Slide Pathological Images.

模式识别(心理学) 接收机工作特性 序数回归 深度学习 人工神经网络 卷积神经网络 特征提取 特征(语言学) 上下文图像分类
作者
Wei Shao,Tongxin Wang,Zhi Huang,Zhi Han,Jie Zhang,Kun Huang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3739-3747 被引量:3
标识
DOI:10.1109/tmi.2021.3097319
摘要

Whole-Slide Histopathology Image (WSI) is generally considered the gold standard for cancer diagnosis and prognosis. Given the large inter-operator variation among pathologists, there is an imperative need to develop machine learning models based on WSIs for consistently predicting patient prognosis. The existing WSI-based prediction methods do not utilize the ordinal ranking loss to train the prognosis model, and thus cannot model the strong ordinal information among different patients in an efficient way. Another challenge is that a WSI is of large size (e.g., 100,000-by-100,000 pixels) with heterogeneous patterns but often only annotated with a single WSI-level label, which further complicates the training process. To address these challenges, we consider the ordinal characteristic of the survival process by adding a ranking-based regularization term on the Cox model and propose a weakly supervised deep ordinal Cox model (BDOCOX) for survival prediction from WSIs. Here, we generate amounts of bags from WSIs, and each bag is comprised of the image patches representing the heterogeneous patterns of WSIs, which is assumed to match the WSI-level labels for training the proposed model. The effectiveness of the proposed method is well validated by theoretical analysis as well as the prognosis and patient stratification results on three cancer datasets from The Cancer Genome Atlas (TCGA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻描淡写发布了新的文献求助10
刚刚
1秒前
xiuxiu完成签到 ,获得积分10
3秒前
正直的念梦完成签到,获得积分10
6秒前
单纯的手机完成签到,获得积分10
8秒前
T1unkillable发布了新的文献求助100
10秒前
13秒前
liumu完成签到 ,获得积分10
14秒前
天高任鸟飞完成签到,获得积分10
14秒前
hnxxangel完成签到,获得积分10
15秒前
lunyu完成签到,获得积分10
15秒前
zero桥完成签到,获得积分10
18秒前
丘比特应助ffx采纳,获得10
18秒前
典雅的绿凝完成签到,获得积分10
19秒前
19秒前
幽默曼文发布了新的文献求助10
20秒前
scxl2000完成签到,获得积分10
22秒前
23秒前
大熊完成签到 ,获得积分10
24秒前
花椰菜完成签到,获得积分10
26秒前
雪白的乐巧完成签到,获得积分10
27秒前
机灵之云发布了新的文献求助10
27秒前
情怀应助幽默曼文采纳,获得10
27秒前
激昂的亦竹完成签到 ,获得积分10
28秒前
曹操的曹发布了新的文献求助10
28秒前
爆米花应助问心采纳,获得10
29秒前
大方的舞仙完成签到 ,获得积分10
30秒前
30秒前
无花果应助jiahao采纳,获得30
31秒前
32秒前
32秒前
35秒前
SJT完成签到,获得积分10
36秒前
文静千凡完成签到,获得积分10
36秒前
36秒前
36秒前
tzy6665完成签到,获得积分10
36秒前
DiDi发布了新的文献求助10
36秒前
ffx发布了新的文献求助10
37秒前
39秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139810
求助须知:如何正确求助?哪些是违规求助? 2790682
关于积分的说明 7796255
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601176