Weakly Supervised Deep Ordinal Cox Model for Survival Prediction From Whole-Slide Pathological Images.

模式识别(心理学) 接收机工作特性 序数回归 深度学习 人工神经网络 卷积神经网络 特征提取 特征(语言学) 上下文图像分类
作者
Wei Shao,Tongxin Wang,Zhi Huang,Zhi Han,Jie Zhang,Kun Huang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3739-3747 被引量:3
标识
DOI:10.1109/tmi.2021.3097319
摘要

Whole-Slide Histopathology Image (WSI) is generally considered the gold standard for cancer diagnosis and prognosis. Given the large inter-operator variation among pathologists, there is an imperative need to develop machine learning models based on WSIs for consistently predicting patient prognosis. The existing WSI-based prediction methods do not utilize the ordinal ranking loss to train the prognosis model, and thus cannot model the strong ordinal information among different patients in an efficient way. Another challenge is that a WSI is of large size (e.g., 100,000-by-100,000 pixels) with heterogeneous patterns but often only annotated with a single WSI-level label, which further complicates the training process. To address these challenges, we consider the ordinal characteristic of the survival process by adding a ranking-based regularization term on the Cox model and propose a weakly supervised deep ordinal Cox model (BDOCOX) for survival prediction from WSIs. Here, we generate amounts of bags from WSIs, and each bag is comprised of the image patches representing the heterogeneous patterns of WSIs, which is assumed to match the WSI-level labels for training the proposed model. The effectiveness of the proposed method is well validated by theoretical analysis as well as the prognosis and patient stratification results on three cancer datasets from The Cancer Genome Atlas (TCGA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助瘦瘦的背包采纳,获得10
刚刚
小木棉完成签到,获得积分10
刚刚
威武诺言发布了新的文献求助10
刚刚
刚刚
刚刚
wdn0411完成签到,获得积分10
刚刚
zenoalter完成签到,获得积分10
1秒前
受伤幻桃完成签到,获得积分10
1秒前
lh完成签到,获得积分10
1秒前
2秒前
2秒前
怡然的飞珍完成签到,获得积分10
2秒前
Ava应助luuuuuing采纳,获得30
3秒前
高高千筹完成签到,获得积分10
3秒前
Jasper应助哲000采纳,获得10
4秒前
调皮的天真完成签到 ,获得积分10
4秒前
1ssd应助有风采纳,获得10
4秒前
4秒前
奇奇怪怪完成签到,获得积分10
5秒前
TanFT发布了新的文献求助10
5秒前
青鸟飞鱼完成签到,获得积分10
5秒前
吴吴发布了新的文献求助10
6秒前
ShengjuChen完成签到 ,获得积分10
6秒前
6秒前
CipherSage应助标致小伙采纳,获得10
6秒前
科研通AI5应助深爱不疑采纳,获得10
6秒前
艺术家脾气完成签到,获得积分10
7秒前
8秒前
unicornmed发布了新的文献求助10
8秒前
可爱的函函应助茶艺如何采纳,获得10
9秒前
江知之完成签到 ,获得积分0
9秒前
9秒前
11秒前
刻苦问柳发布了新的文献求助10
11秒前
酷酷平卉完成签到 ,获得积分10
11秒前
星辰大海应助吴吴采纳,获得30
11秒前
JTB发布了新的文献求助10
11秒前
BILNQPL发布了新的文献求助10
11秒前
兮遥遥完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762