NONINVASIVE DETECTION, CLASSIFICATION, AND RISK STRATIFICATION OF PRIMARY CNS LYMPHOMAS BY CTDNA PROFILING

循环肿瘤DNA 医学 淋巴瘤 肿瘤科 内科学 数字聚合酶链反应 脑脊液 原发性中枢神经系统淋巴瘤 生物标志物 病理 癌症 聚合酶链反应 生物 基因 生物化学
作者
Jurik Mutter,Stefan Alig,Eliza Lauer,Mohammad Shahrokh Esfahani,Jan Mitschke,David M. Kurtz,Mari Olsen,C. L. Liu,Michael C. Jin,Sabine Bleul,Charles Macaulay,Nicolas Neidert,Dieter Henrik Heiland,Jürgen Finke,Justus Duyster,Julius Wehrle,Marco Prinz,Gerald Illerhaus,Peter C. Reinacher,Elisabeth Schorb,Maximilian Diehn,Ash A. Alizadeh,Florian Scherer
出处
期刊:Hematological Oncology [Wiley]
卷期号:39 (S2) 被引量:3
标识
DOI:10.1002/hon.46_2879
摘要

Introduction: Circulating tumor DNA (ctDNA) has great potential as a noninvasive biomarker in diverse systemic lymphomas (Huet et al, J Clin Oncol 2020). Noninvasive access to tumor-derived DNA is particularly appealing for patients with primary CNS lymphoma (PCNSL), since tumor material otherwise requires invasive surgical procedures. Here, we explored the value of ctDNA in PCNSL patients for disease classification, MRD detection, and early prediction of relapse. Methods: We applied Cancer Personalized Profiling by Deep Sequencing (CAPP-Seq) to 65 tumor biopsies, 101 blood plasma specimens, and 43 cerebrospinal fluid (CSF) samples from 68 subjects with PCNSL, targeting 580 distinct genomic regions. We separately used Phased variant Enrichment Sequencing (PhasED-Seq, Kurtz et al, Nat Biotech 2021; in press) for ultrasensitive ctDNA monitoring. Levels of ctDNA were correlated with radiological measures of tumor burden and tested for associations with clinical outcomes. Finally, we developed a novel machine learning classifier to noninvasively distinguish CNS lymphomas from other CNS tumors based on their mutation patterns in plasma and CSF, using supervised training of a random forest followed by its independent validation. Results: We identified genetic aberrations in 100% of PCNSL tumor specimens (n = 65), with a median of 378 mutations per patient. Pretreatment plasma ctDNA was detectable in 82% of patients and in 100% of CSF samples (Fig. 1A), with ctDNA concentrations ranging from 0.013-1038 hGE/mL (median: 0.97) in plasma and 0.043-4342 hGE/mL (median: 3.55) in CSF (Fig. 1B). While ctDNA levels were significantly correlated with total tumor volume in MRI (p = 0.004, Fig. 1C), we did not observe significant associations between ctDNA levels and MSKCC score or concurrent steroid treatment (Fig. 1D-E). Pretreatment ctDNA was significantly associated with PFS (p = 0.0005, HR 3.6) and OS (p = 0.019, HR 3.1), both as continuous and binary variable (Fig. 1F). Furthermore, ctDNA positivity during curative intent induction therapy accurately predicted clinical outcomes (Fig. 1G). Finally, we applied our novel machine learning classifier to 129 specimens from an independent validation cohort. We observed high specificity (100%) and positive predictive value (100%) for noninvasive diagnosis of CNSL, with moderate sensitivity (50% for CSF, 20% for plasma), suggesting that a significant subset of CNSL patients might be able to forego invasive biopsies. Conclusions: We demonstrate robust and ultrasensitive detection of ctDNA at various disease milestones in PCNSL. Our findings suggest that ctDNA could serve as a valuable clinical biomarker for tumor burden assessment, outcome prediction, and biopsy-free lymphoma classification. We envision an important future role of ctDNA for personalized risk stratification and guiding therapies in clinical trials and in routine PCNSL management. (A) Sensitivity and specificity of ctDNA monitoring in blood plasma and CSF using PhasED-Seq. Grey bars on the left: sensitivities copmpared to previous NGS-based technologies (Fontanilles et al., Oncotarget 2017, Yoont et al., ASH Annual Meeting 2019, Montesinos-Rongen et al., J Mol Diagn 2020, Hattori et al., Cancer Sci 2018). Grey bars on the right show sensitivities of flow cytometry (FC) and Cytopathology (CP) in our cohort. (B) Scatter plot showing the comparision of ctDNA concentrations in pretreatment blood plasma and CSF. (C) Correlation of Association between pretreatment ctDNA plasma concentrations and total radiographic tumor volume (TRTV) measured by MRI. (D) ctDNA concentrations and steroid treatment at blood draw. (F) Kaplan Meier analysis of PFS and OS in patients with detactabe and non-detectable pretreatment ctDNA at diagnosis or progression. (G) Kaplan Meier analysis of PFS in patients with positive or negative ctDNA during curative intent induction treatment The research was funded by: the Else Kröner-Fresenius-Stiftung (to FS, 2018_A83), the Fördergesellschaft Forschung Tumorbiologie (to FS), and the Clinician Scientist Program of the Deutsche Gesellschaft für Innere Medizin (to FS) Keywords: Diagnostic and Prognostic Biomarkers, Liquid biopsy, Extranodal non-Hodgkin lymphoma Conflicts of interests pertinent to the abstract D. M. Kurtz Consultant or advisory role: Roche Molecular Diagnostics, Genentech Other remuneration: Ownership equity in Foresight Diagnostics. Dr. Kurtz has patents pending related to methods for analysis of cell free nucleic acids and methods for treatment selection based on statistical frameworks of clinical outcome. M. Diehn Consultant or advisory role: Roche, AstraZeneca, RefleXion and BioNTech Research funding: Varian Medical Systems, Illumina Other remuneration: Ownership interest in CiberMed, patent filings related to cancer biomarkers A. A. Alizadeh Consultant or advisory role: Genentech, Roche, Chugai, Gilead, Celgene Other remuneration: Ownership interest in CiberMed and FortySeven Inc, patent filings related to cancer biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安青牛应助zy采纳,获得10
1秒前
南国之霄发布了新的文献求助10
2秒前
3秒前
mkljl发布了新的文献求助10
3秒前
4秒前
HDXHB发布了新的文献求助10
5秒前
张键豪发布了新的文献求助10
6秒前
fufu发布了新的文献求助10
7秒前
8秒前
柳亦诚应助坦率晓霜采纳,获得10
9秒前
9秒前
10秒前
周小鱼发布了新的文献求助10
12秒前
核桃应助fufu采纳,获得10
13秒前
浮游应助HOH采纳,获得10
13秒前
13秒前
14秒前
14秒前
15秒前
kk发布了新的文献求助10
16秒前
许晴发布了新的文献求助10
19秒前
nicole发布了新的文献求助10
19秒前
文艺水风完成签到 ,获得积分0
20秒前
20秒前
22秒前
22秒前
23秒前
微雨若,,完成签到 ,获得积分10
25秒前
羚羊完成签到,获得积分10
25秒前
26秒前
刘老哥6发布了新的文献求助10
26秒前
gougou发布了新的文献求助10
27秒前
顾矜应助科研通管家采纳,获得10
27秒前
鸣笛应助科研通管家采纳,获得10
27秒前
852应助科研通管家采纳,获得10
27秒前
orixero应助科研通管家采纳,获得10
28秒前
28秒前
小明应助科研通管家采纳,获得10
28秒前
Hello应助科研通管家采纳,获得10
28秒前
顾矜应助袁艺珊采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4536579
求助须知:如何正确求助?哪些是违规求助? 3971805
关于积分的说明 12304920
捐赠科研通 3638619
什么是DOI,文献DOI怎么找? 2003355
邀请新用户注册赠送积分活动 1038791
科研通“疑难数据库(出版商)”最低求助积分说明 928215