NONINVASIVE DETECTION, CLASSIFICATION, AND RISK STRATIFICATION OF PRIMARY CNS LYMPHOMAS BY CTDNA PROFILING

循环肿瘤DNA 医学 淋巴瘤 肿瘤科 内科学 数字聚合酶链反应 脑脊液 原发性中枢神经系统淋巴瘤 生物标志物 病理 癌症 聚合酶链反应 生物 基因 生物化学
作者
Jurik Mutter,Stefan Alig,Eliza Lauer,Mohammad Shahrokh Esfahani,Jan Mitschke,David M. Kurtz,Mari Olsen,C. L. Liu,Michael C. Jin,Sabine Bleul,Charles Macaulay,Nicolas Neidert,Dieter Henrik Heiland,Jürgen Finke,Justus Duyster,Julius Wehrle,Marco Prinz,Gerald Illerhaus,Peter C. Reinacher,Elisabeth Schorb,Maximilian Diehn,Ash A. Alizadeh,Florian Scherer
出处
期刊:Hematological Oncology [Wiley]
卷期号:39 (S2) 被引量:3
标识
DOI:10.1002/hon.46_2879
摘要

Introduction: Circulating tumor DNA (ctDNA) has great potential as a noninvasive biomarker in diverse systemic lymphomas (Huet et al, J Clin Oncol 2020). Noninvasive access to tumor-derived DNA is particularly appealing for patients with primary CNS lymphoma (PCNSL), since tumor material otherwise requires invasive surgical procedures. Here, we explored the value of ctDNA in PCNSL patients for disease classification, MRD detection, and early prediction of relapse. Methods: We applied Cancer Personalized Profiling by Deep Sequencing (CAPP-Seq) to 65 tumor biopsies, 101 blood plasma specimens, and 43 cerebrospinal fluid (CSF) samples from 68 subjects with PCNSL, targeting 580 distinct genomic regions. We separately used Phased variant Enrichment Sequencing (PhasED-Seq, Kurtz et al, Nat Biotech 2021; in press) for ultrasensitive ctDNA monitoring. Levels of ctDNA were correlated with radiological measures of tumor burden and tested for associations with clinical outcomes. Finally, we developed a novel machine learning classifier to noninvasively distinguish CNS lymphomas from other CNS tumors based on their mutation patterns in plasma and CSF, using supervised training of a random forest followed by its independent validation. Results: We identified genetic aberrations in 100% of PCNSL tumor specimens (n = 65), with a median of 378 mutations per patient. Pretreatment plasma ctDNA was detectable in 82% of patients and in 100% of CSF samples (Fig. 1A), with ctDNA concentrations ranging from 0.013-1038 hGE/mL (median: 0.97) in plasma and 0.043-4342 hGE/mL (median: 3.55) in CSF (Fig. 1B). While ctDNA levels were significantly correlated with total tumor volume in MRI (p = 0.004, Fig. 1C), we did not observe significant associations between ctDNA levels and MSKCC score or concurrent steroid treatment (Fig. 1D-E). Pretreatment ctDNA was significantly associated with PFS (p = 0.0005, HR 3.6) and OS (p = 0.019, HR 3.1), both as continuous and binary variable (Fig. 1F). Furthermore, ctDNA positivity during curative intent induction therapy accurately predicted clinical outcomes (Fig. 1G). Finally, we applied our novel machine learning classifier to 129 specimens from an independent validation cohort. We observed high specificity (100%) and positive predictive value (100%) for noninvasive diagnosis of CNSL, with moderate sensitivity (50% for CSF, 20% for plasma), suggesting that a significant subset of CNSL patients might be able to forego invasive biopsies. Conclusions: We demonstrate robust and ultrasensitive detection of ctDNA at various disease milestones in PCNSL. Our findings suggest that ctDNA could serve as a valuable clinical biomarker for tumor burden assessment, outcome prediction, and biopsy-free lymphoma classification. We envision an important future role of ctDNA for personalized risk stratification and guiding therapies in clinical trials and in routine PCNSL management. (A) Sensitivity and specificity of ctDNA monitoring in blood plasma and CSF using PhasED-Seq. Grey bars on the left: sensitivities copmpared to previous NGS-based technologies (Fontanilles et al., Oncotarget 2017, Yoont et al., ASH Annual Meeting 2019, Montesinos-Rongen et al., J Mol Diagn 2020, Hattori et al., Cancer Sci 2018). Grey bars on the right show sensitivities of flow cytometry (FC) and Cytopathology (CP) in our cohort. (B) Scatter plot showing the comparision of ctDNA concentrations in pretreatment blood plasma and CSF. (C) Correlation of Association between pretreatment ctDNA plasma concentrations and total radiographic tumor volume (TRTV) measured by MRI. (D) ctDNA concentrations and steroid treatment at blood draw. (F) Kaplan Meier analysis of PFS and OS in patients with detactabe and non-detectable pretreatment ctDNA at diagnosis or progression. (G) Kaplan Meier analysis of PFS in patients with positive or negative ctDNA during curative intent induction treatment The research was funded by: the Else Kröner-Fresenius-Stiftung (to FS, 2018_A83), the Fördergesellschaft Forschung Tumorbiologie (to FS), and the Clinician Scientist Program of the Deutsche Gesellschaft für Innere Medizin (to FS) Keywords: Diagnostic and Prognostic Biomarkers, Liquid biopsy, Extranodal non-Hodgkin lymphoma Conflicts of interests pertinent to the abstract D. M. Kurtz Consultant or advisory role: Roche Molecular Diagnostics, Genentech Other remuneration: Ownership equity in Foresight Diagnostics. Dr. Kurtz has patents pending related to methods for analysis of cell free nucleic acids and methods for treatment selection based on statistical frameworks of clinical outcome. M. Diehn Consultant or advisory role: Roche, AstraZeneca, RefleXion and BioNTech Research funding: Varian Medical Systems, Illumina Other remuneration: Ownership interest in CiberMed, patent filings related to cancer biomarkers A. A. Alizadeh Consultant or advisory role: Genentech, Roche, Chugai, Gilead, Celgene Other remuneration: Ownership interest in CiberMed and FortySeven Inc, patent filings related to cancer biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘉子完成签到,获得积分10
1秒前
HYLynn完成签到,获得积分10
1秒前
大辉完成签到 ,获得积分10
4秒前
所所应助英勇靖雁采纳,获得10
4秒前
5秒前
小鱼儿发布了新的文献求助10
5秒前
Felix0917完成签到,获得积分10
6秒前
6秒前
JiayanLi完成签到,获得积分20
6秒前
chenchao完成签到,获得积分10
7秒前
9秒前
所所应助汎影采纳,获得10
10秒前
UHPC发布了新的文献求助10
11秒前
11秒前
华仔应助寻光人采纳,获得10
12秒前
赘婿应助罗彩明采纳,获得10
12秒前
12秒前
12秒前
xiaofengyyy发布了新的文献求助10
13秒前
我是老大应助sunyuhao采纳,获得30
14秒前
15秒前
顾矜应助sunwei采纳,获得10
16秒前
SciGPT应助现实的安波采纳,获得10
17秒前
李123发布了新的文献求助10
17秒前
李健的小迷弟应助汎影采纳,获得10
18秒前
19秒前
orixero应助Applause采纳,获得10
19秒前
20秒前
小蘑菇应助太阳采纳,获得10
20秒前
20秒前
哑巴完成签到,获得积分10
20秒前
20秒前
浮游应助科研通管家采纳,获得10
21秒前
三无发布了新的文献求助10
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得30
21秒前
Leanne应助科研通管家采纳,获得30
21秒前
无花果应助科研通管家采纳,获得10
21秒前
mmmmb应助科研通管家采纳,获得30
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132036
求助须知:如何正确求助?哪些是违规求助? 4333560
关于积分的说明 13501173
捐赠科研通 4170621
什么是DOI,文献DOI怎么找? 2286445
邀请新用户注册赠送积分活动 1287303
关于科研通互助平台的介绍 1228340