NONINVASIVE DETECTION, CLASSIFICATION, AND RISK STRATIFICATION OF PRIMARY CNS LYMPHOMAS BY CTDNA PROFILING

循环肿瘤DNA 医学 淋巴瘤 肿瘤科 内科学 数字聚合酶链反应 脑脊液 原发性中枢神经系统淋巴瘤 生物标志物 病理 癌症 聚合酶链反应 生物 基因 生物化学
作者
Jurik Mutter,Stefan Alig,Eliza Lauer,Mohammad Shahrokh Esfahani,Jan Mitschke,David M. Kurtz,Mari Olsen,C. L. Liu,Michael C. Jin,Sabine Bleul,Charles Macaulay,Nicolas Neidert,Dieter Henrik Heiland,Jürgen Finke,Justus Duyster,Julius Wehrle,Marco Prinz,Gerald Illerhaus,Peter C. Reinacher,Elisabeth Schorb,Maximilian Diehn,Ash A. Alizadeh,Florian Scherer
出处
期刊:Hematological Oncology [Wiley]
卷期号:39 (S2) 被引量:3
标识
DOI:10.1002/hon.46_2879
摘要

Introduction: Circulating tumor DNA (ctDNA) has great potential as a noninvasive biomarker in diverse systemic lymphomas (Huet et al, J Clin Oncol 2020). Noninvasive access to tumor-derived DNA is particularly appealing for patients with primary CNS lymphoma (PCNSL), since tumor material otherwise requires invasive surgical procedures. Here, we explored the value of ctDNA in PCNSL patients for disease classification, MRD detection, and early prediction of relapse. Methods: We applied Cancer Personalized Profiling by Deep Sequencing (CAPP-Seq) to 65 tumor biopsies, 101 blood plasma specimens, and 43 cerebrospinal fluid (CSF) samples from 68 subjects with PCNSL, targeting 580 distinct genomic regions. We separately used Phased variant Enrichment Sequencing (PhasED-Seq, Kurtz et al, Nat Biotech 2021; in press) for ultrasensitive ctDNA monitoring. Levels of ctDNA were correlated with radiological measures of tumor burden and tested for associations with clinical outcomes. Finally, we developed a novel machine learning classifier to noninvasively distinguish CNS lymphomas from other CNS tumors based on their mutation patterns in plasma and CSF, using supervised training of a random forest followed by its independent validation. Results: We identified genetic aberrations in 100% of PCNSL tumor specimens (n = 65), with a median of 378 mutations per patient. Pretreatment plasma ctDNA was detectable in 82% of patients and in 100% of CSF samples (Fig. 1A), with ctDNA concentrations ranging from 0.013-1038 hGE/mL (median: 0.97) in plasma and 0.043-4342 hGE/mL (median: 3.55) in CSF (Fig. 1B). While ctDNA levels were significantly correlated with total tumor volume in MRI (p = 0.004, Fig. 1C), we did not observe significant associations between ctDNA levels and MSKCC score or concurrent steroid treatment (Fig. 1D-E). Pretreatment ctDNA was significantly associated with PFS (p = 0.0005, HR 3.6) and OS (p = 0.019, HR 3.1), both as continuous and binary variable (Fig. 1F). Furthermore, ctDNA positivity during curative intent induction therapy accurately predicted clinical outcomes (Fig. 1G). Finally, we applied our novel machine learning classifier to 129 specimens from an independent validation cohort. We observed high specificity (100%) and positive predictive value (100%) for noninvasive diagnosis of CNSL, with moderate sensitivity (50% for CSF, 20% for plasma), suggesting that a significant subset of CNSL patients might be able to forego invasive biopsies. Conclusions: We demonstrate robust and ultrasensitive detection of ctDNA at various disease milestones in PCNSL. Our findings suggest that ctDNA could serve as a valuable clinical biomarker for tumor burden assessment, outcome prediction, and biopsy-free lymphoma classification. We envision an important future role of ctDNA for personalized risk stratification and guiding therapies in clinical trials and in routine PCNSL management. (A) Sensitivity and specificity of ctDNA monitoring in blood plasma and CSF using PhasED-Seq. Grey bars on the left: sensitivities copmpared to previous NGS-based technologies (Fontanilles et al., Oncotarget 2017, Yoont et al., ASH Annual Meeting 2019, Montesinos-Rongen et al., J Mol Diagn 2020, Hattori et al., Cancer Sci 2018). Grey bars on the right show sensitivities of flow cytometry (FC) and Cytopathology (CP) in our cohort. (B) Scatter plot showing the comparision of ctDNA concentrations in pretreatment blood plasma and CSF. (C) Correlation of Association between pretreatment ctDNA plasma concentrations and total radiographic tumor volume (TRTV) measured by MRI. (D) ctDNA concentrations and steroid treatment at blood draw. (F) Kaplan Meier analysis of PFS and OS in patients with detactabe and non-detectable pretreatment ctDNA at diagnosis or progression. (G) Kaplan Meier analysis of PFS in patients with positive or negative ctDNA during curative intent induction treatment The research was funded by: the Else Kröner-Fresenius-Stiftung (to FS, 2018_A83), the Fördergesellschaft Forschung Tumorbiologie (to FS), and the Clinician Scientist Program of the Deutsche Gesellschaft für Innere Medizin (to FS) Keywords: Diagnostic and Prognostic Biomarkers, Liquid biopsy, Extranodal non-Hodgkin lymphoma Conflicts of interests pertinent to the abstract D. M. Kurtz Consultant or advisory role: Roche Molecular Diagnostics, Genentech Other remuneration: Ownership equity in Foresight Diagnostics. Dr. Kurtz has patents pending related to methods for analysis of cell free nucleic acids and methods for treatment selection based on statistical frameworks of clinical outcome. M. Diehn Consultant or advisory role: Roche, AstraZeneca, RefleXion and BioNTech Research funding: Varian Medical Systems, Illumina Other remuneration: Ownership interest in CiberMed, patent filings related to cancer biomarkers A. A. Alizadeh Consultant or advisory role: Genentech, Roche, Chugai, Gilead, Celgene Other remuneration: Ownership interest in CiberMed and FortySeven Inc, patent filings related to cancer biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
AA简单男孩完成签到,获得积分10
1秒前
2秒前
临川发布了新的文献求助40
4秒前
不吃香菜完成签到,获得积分10
4秒前
4秒前
隐形曼青应助6666采纳,获得30
6秒前
田様应助缥缈老九采纳,获得10
7秒前
善学以致用应助凡`采纳,获得10
7秒前
8秒前
8秒前
打打应助不吃香菜采纳,获得30
8秒前
9秒前
任性的半仙完成签到,获得积分10
9秒前
滴滴答答发布了新的文献求助10
10秒前
11秒前
12秒前
谔谔发布了新的文献求助20
13秒前
demon王完成签到,获得积分10
13秒前
456发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
16秒前
焜少完成签到,获得积分10
16秒前
Danw发布了新的文献求助10
16秒前
16秒前
毛月月发布了新的文献求助10
17秒前
lllllnnnnj完成签到,获得积分10
18秒前
舒服的飞丹完成签到,获得积分20
18秒前
18秒前
Globalzilala发布了新的文献求助20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296703
求助须知:如何正确求助?哪些是违规求助? 4445819
关于积分的说明 13837462
捐赠科研通 4330808
什么是DOI,文献DOI怎么找? 2377291
邀请新用户注册赠送积分活动 1372608
关于科研通互助平台的介绍 1338052