亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

NONINVASIVE DETECTION, CLASSIFICATION, AND RISK STRATIFICATION OF PRIMARY CNS LYMPHOMAS BY CTDNA PROFILING

循环肿瘤DNA 医学 淋巴瘤 肿瘤科 内科学 数字聚合酶链反应 脑脊液 原发性中枢神经系统淋巴瘤 生物标志物 病理 癌症 聚合酶链反应 生物 基因 生物化学
作者
Jurik Mutter,Stefan Alig,Eliza Lauer,Mohammad Shahrokh Esfahani,Jan Mitschke,David M. Kurtz,Mari Olsen,C. L. Liu,Michael C. Jin,Sabine Bleul,Charles Macaulay,Nicolas Neidert,Dieter Henrik Heiland,Jürgen Finke,Justus Duyster,Julius Wehrle,Marco Prinz,Gerald Illerhaus,Peter C. Reinacher,Elisabeth Schorb,Maximilian Diehn,Ash A. Alizadeh,Florian Scherer
出处
期刊:Hematological Oncology [Wiley]
卷期号:39 (S2) 被引量:3
标识
DOI:10.1002/hon.46_2879
摘要

Introduction: Circulating tumor DNA (ctDNA) has great potential as a noninvasive biomarker in diverse systemic lymphomas (Huet et al, J Clin Oncol 2020). Noninvasive access to tumor-derived DNA is particularly appealing for patients with primary CNS lymphoma (PCNSL), since tumor material otherwise requires invasive surgical procedures. Here, we explored the value of ctDNA in PCNSL patients for disease classification, MRD detection, and early prediction of relapse. Methods: We applied Cancer Personalized Profiling by Deep Sequencing (CAPP-Seq) to 65 tumor biopsies, 101 blood plasma specimens, and 43 cerebrospinal fluid (CSF) samples from 68 subjects with PCNSL, targeting 580 distinct genomic regions. We separately used Phased variant Enrichment Sequencing (PhasED-Seq, Kurtz et al, Nat Biotech 2021; in press) for ultrasensitive ctDNA monitoring. Levels of ctDNA were correlated with radiological measures of tumor burden and tested for associations with clinical outcomes. Finally, we developed a novel machine learning classifier to noninvasively distinguish CNS lymphomas from other CNS tumors based on their mutation patterns in plasma and CSF, using supervised training of a random forest followed by its independent validation. Results: We identified genetic aberrations in 100% of PCNSL tumor specimens (n = 65), with a median of 378 mutations per patient. Pretreatment plasma ctDNA was detectable in 82% of patients and in 100% of CSF samples (Fig. 1A), with ctDNA concentrations ranging from 0.013-1038 hGE/mL (median: 0.97) in plasma and 0.043-4342 hGE/mL (median: 3.55) in CSF (Fig. 1B). While ctDNA levels were significantly correlated with total tumor volume in MRI (p = 0.004, Fig. 1C), we did not observe significant associations between ctDNA levels and MSKCC score or concurrent steroid treatment (Fig. 1D-E). Pretreatment ctDNA was significantly associated with PFS (p = 0.0005, HR 3.6) and OS (p = 0.019, HR 3.1), both as continuous and binary variable (Fig. 1F). Furthermore, ctDNA positivity during curative intent induction therapy accurately predicted clinical outcomes (Fig. 1G). Finally, we applied our novel machine learning classifier to 129 specimens from an independent validation cohort. We observed high specificity (100%) and positive predictive value (100%) for noninvasive diagnosis of CNSL, with moderate sensitivity (50% for CSF, 20% for plasma), suggesting that a significant subset of CNSL patients might be able to forego invasive biopsies. Conclusions: We demonstrate robust and ultrasensitive detection of ctDNA at various disease milestones in PCNSL. Our findings suggest that ctDNA could serve as a valuable clinical biomarker for tumor burden assessment, outcome prediction, and biopsy-free lymphoma classification. We envision an important future role of ctDNA for personalized risk stratification and guiding therapies in clinical trials and in routine PCNSL management. (A) Sensitivity and specificity of ctDNA monitoring in blood plasma and CSF using PhasED-Seq. Grey bars on the left: sensitivities copmpared to previous NGS-based technologies (Fontanilles et al., Oncotarget 2017, Yoont et al., ASH Annual Meeting 2019, Montesinos-Rongen et al., J Mol Diagn 2020, Hattori et al., Cancer Sci 2018). Grey bars on the right show sensitivities of flow cytometry (FC) and Cytopathology (CP) in our cohort. (B) Scatter plot showing the comparision of ctDNA concentrations in pretreatment blood plasma and CSF. (C) Correlation of Association between pretreatment ctDNA plasma concentrations and total radiographic tumor volume (TRTV) measured by MRI. (D) ctDNA concentrations and steroid treatment at blood draw. (F) Kaplan Meier analysis of PFS and OS in patients with detactabe and non-detectable pretreatment ctDNA at diagnosis or progression. (G) Kaplan Meier analysis of PFS in patients with positive or negative ctDNA during curative intent induction treatment The research was funded by: the Else Kröner-Fresenius-Stiftung (to FS, 2018_A83), the Fördergesellschaft Forschung Tumorbiologie (to FS), and the Clinician Scientist Program of the Deutsche Gesellschaft für Innere Medizin (to FS) Keywords: Diagnostic and Prognostic Biomarkers, Liquid biopsy, Extranodal non-Hodgkin lymphoma Conflicts of interests pertinent to the abstract D. M. Kurtz Consultant or advisory role: Roche Molecular Diagnostics, Genentech Other remuneration: Ownership equity in Foresight Diagnostics. Dr. Kurtz has patents pending related to methods for analysis of cell free nucleic acids and methods for treatment selection based on statistical frameworks of clinical outcome. M. Diehn Consultant or advisory role: Roche, AstraZeneca, RefleXion and BioNTech Research funding: Varian Medical Systems, Illumina Other remuneration: Ownership interest in CiberMed, patent filings related to cancer biomarkers A. A. Alizadeh Consultant or advisory role: Genentech, Roche, Chugai, Gilead, Celgene Other remuneration: Ownership interest in CiberMed and FortySeven Inc, patent filings related to cancer biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
满意的伊完成签到,获得积分10
18秒前
27秒前
54秒前
54秒前
Alimove发布了新的文献求助10
57秒前
大模型应助Alimove采纳,获得30
1分钟前
FashionBoy应助ZBQ采纳,获得10
1分钟前
浮游应助zing采纳,获得10
1分钟前
情怀应助爱妍采纳,获得10
1分钟前
1分钟前
ZBQ发布了新的文献求助10
1分钟前
1分钟前
1分钟前
爱妍发布了新的文献求助10
1分钟前
1分钟前
1分钟前
爱妍完成签到,获得积分20
2分钟前
彭于晏应助study采纳,获得10
2分钟前
2分钟前
study完成签到,获得积分10
2分钟前
2分钟前
可爱的函函应助study采纳,获得10
2分钟前
2分钟前
study发布了新的文献求助10
2分钟前
2分钟前
study发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
hehe完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
Huzhu应助科研通管家采纳,获得10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
balko完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488561
求助须知:如何正确求助?哪些是违规求助? 4587391
关于积分的说明 14413838
捐赠科研通 4518759
什么是DOI,文献DOI怎么找? 2476074
邀请新用户注册赠送积分活动 1461541
关于科研通互助平台的介绍 1434505