PepFormer: End-to-End Transformer-Based Siamese Network to Predict and Enhance Peptide Detectability Based on Sequence Only

判别式 人工智能 变压器 水准点(测量) 计算机科学 一般化 源代码 机器学习 端到端原则 化学 数学分析 物理 数学 大地测量学 量子力学 地理 操作系统 电压
作者
Hao Cheng,B. Dharma Rao,Lei Lü,Lizhen Cui,Guobao Xiao,Ran Su,Leyi Wei
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (16): 6481-6490 被引量:33
标识
DOI:10.1021/acs.analchem.1c00354
摘要

The detectability of peptides is fundamentally important in shotgun proteomics experiments. At present, there are many computational methods to predict the detectability of peptides based on sequential composition or physicochemical properties, but they all have various shortcomings. Here, we present PepFormer, a novel end-to-end Siamese network coupled with a hybrid architecture of a Transformer and gated recurrent units that is able to predict the peptide detectability based on peptide sequences only. Specially, we, for the first time, use contrastive learning and construct a new loss function for model training, greatly improving the generalization ability of our predictive model. Comparative results demonstrate that our model performs significantly better than state-of-the-art methods on benchmark data sets in two species (Homo sapiens and Mus musculus). To make the model more interpretable, we further investigate the embedded representations of peptide sequences automatically learnt from our model, and the visualization results indicate that our model can efficiently capture high-latent discriminative information, improving the predictive performance. In addition, our model shows a strong ability of cross-species transfer learning and adaptability, demonstrating that it has great potential in robust prediction of peptides detectability on different species. The source code of our proposed method can be found via https://github.com/WLYLab/PepFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhouchen完成签到,获得积分10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
bill应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得30
2秒前
2秒前
大个应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得50
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
dafhluih应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得30
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
zx完成签到,获得积分10
4秒前
宰宰小熊发布了新的文献求助10
6秒前
研友_8KAOBn发布了新的文献求助10
7秒前
7秒前
ccalvintan发布了新的文献求助10
8秒前
风趣的芙完成签到,获得积分20
9秒前
9秒前
李爱国应助单身的蓝血采纳,获得10
10秒前
yjercou发布了新的文献求助10
11秒前
12秒前
王旭东发布了新的文献求助10
12秒前
TaoZou完成签到,获得积分10
13秒前
14秒前
qiu完成签到,获得积分10
16秒前
18秒前
viper3完成签到,获得积分10
18秒前
翊瑾完成签到,获得积分10
20秒前
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161391
求助须知:如何正确求助?哪些是违规求助? 2812813
关于积分的说明 7897198
捐赠科研通 2471748
什么是DOI,文献DOI怎么找? 1316110
科研通“疑难数据库(出版商)”最低求助积分说明 631180
版权声明 602112