PepFormer: End-to-End Transformer-Based Siamese Network to Predict and Enhance Peptide Detectability Based on Sequence Only

判别式 人工智能 变压器 水准点(测量) 计算机科学 一般化 源代码 机器学习 端到端原则 化学 数学分析 物理 数学 大地测量学 量子力学 地理 操作系统 电压
作者
Hao Cheng,B. Dharma Rao,Lei Liu,Lizhen Cui,Guobao Xiao,Ran Su,Leyi Wei
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (16): 6481-6490 被引量:49
标识
DOI:10.1021/acs.analchem.1c00354
摘要

The detectability of peptides is fundamentally important in shotgun proteomics experiments. At present, there are many computational methods to predict the detectability of peptides based on sequential composition or physicochemical properties, but they all have various shortcomings. Here, we present PepFormer, a novel end-to-end Siamese network coupled with a hybrid architecture of a Transformer and gated recurrent units that is able to predict the peptide detectability based on peptide sequences only. Specially, we, for the first time, use contrastive learning and construct a new loss function for model training, greatly improving the generalization ability of our predictive model. Comparative results demonstrate that our model performs significantly better than state-of-the-art methods on benchmark data sets in two species (Homo sapiens and Mus musculus). To make the model more interpretable, we further investigate the embedded representations of peptide sequences automatically learnt from our model, and the visualization results indicate that our model can efficiently capture high-latent discriminative information, improving the predictive performance. In addition, our model shows a strong ability of cross-species transfer learning and adaptability, demonstrating that it has great potential in robust prediction of peptides detectability on different species. The source code of our proposed method can be found via https://github.com/WLYLab/PepFormer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
吕洺旭应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
后来应助科研通管家采纳,获得10
刚刚
刚刚
闪闪的乐松完成签到 ,获得积分10
刚刚
HAL应助科研通管家采纳,获得10
刚刚
彭于彦祖应助科研通管家采纳,获得30
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
风清扬应助科研通管家采纳,获得30
1秒前
1秒前
传奇3应助科研通管家采纳,获得20
1秒前
思源应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
吕洺旭应助科研通管家采纳,获得10
1秒前
核桃应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
诸星大完成签到,获得积分10
1秒前
1秒前
yls完成签到,获得积分10
2秒前
2秒前
orixero应助Sun采纳,获得10
2秒前
llk完成签到 ,获得积分10
3秒前
顺心沁完成签到,获得积分10
3秒前
遇见飞儿完成签到,获得积分0
4秒前
义气的音响完成签到 ,获得积分10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603729
求助须知:如何正确求助?哪些是违规求助? 4688711
关于积分的说明 14855620
捐赠科研通 4694855
什么是DOI,文献DOI怎么找? 2540965
邀请新用户注册赠送积分活动 1507131
关于科研通互助平台的介绍 1471814