PepFormer: End-to-End Transformer-Based Siamese Network to Predict and Enhance Peptide Detectability Based on Sequence Only

判别式 人工智能 变压器 水准点(测量) 计算机科学 一般化 源代码 机器学习 端到端原则 化学 地理 大地测量学 电压 数学分析 物理 操作系统 量子力学 数学
作者
Hao Cheng,B. Dharma Rao,Lei Lü,Lizhen Cui,Guobao Xiao,Ran Su,Leyi Wei
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (16): 6481-6490 被引量:33
标识
DOI:10.1021/acs.analchem.1c00354
摘要

The detectability of peptides is fundamentally important in shotgun proteomics experiments. At present, there are many computational methods to predict the detectability of peptides based on sequential composition or physicochemical properties, but they all have various shortcomings. Here, we present PepFormer, a novel end-to-end Siamese network coupled with a hybrid architecture of a Transformer and gated recurrent units that is able to predict the peptide detectability based on peptide sequences only. Specially, we, for the first time, use contrastive learning and construct a new loss function for model training, greatly improving the generalization ability of our predictive model. Comparative results demonstrate that our model performs significantly better than state-of-the-art methods on benchmark data sets in two species (Homo sapiens and Mus musculus). To make the model more interpretable, we further investigate the embedded representations of peptide sequences automatically learnt from our model, and the visualization results indicate that our model can efficiently capture high-latent discriminative information, improving the predictive performance. In addition, our model shows a strong ability of cross-species transfer learning and adaptability, demonstrating that it has great potential in robust prediction of peptides detectability on different species. The source code of our proposed method can be found via https://github.com/WLYLab/PepFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
巫马秋寒应助笑点低可乐采纳,获得10
刚刚
xuex1完成签到,获得积分10
刚刚
情怀应助阳光的雁山采纳,获得10
2秒前
斯文败类应助jy采纳,获得10
2秒前
2秒前
日月轮回发布了新的文献求助10
3秒前
36456657应助木香采纳,获得10
4秒前
无花果应助ns采纳,获得30
4秒前
刘铭晨完成签到,获得积分10
4秒前
5秒前
YY发布了新的文献求助10
5秒前
Rrr发布了新的文献求助10
6秒前
学术蠕虫发布了新的文献求助10
6秒前
6秒前
miumiuka完成签到,获得积分10
7秒前
个性的薯片应助lyt采纳,获得20
9秒前
sweetbearm应助寒涛先生采纳,获得10
10秒前
wanci应助YY采纳,获得10
11秒前
11秒前
12秒前
12秒前
13秒前
HC完成签到 ,获得积分10
14秒前
姚姚的赵赵完成签到,获得积分10
14秒前
JamesPei应助大豪子采纳,获得30
15秒前
jy发布了新的文献求助10
15秒前
15秒前
陆靖易发布了新的文献求助10
15秒前
LQW完成签到,获得积分20
16秒前
17秒前
plant完成签到,获得积分10
17秒前
lyt完成签到,获得积分10
17秒前
18秒前
19秒前
敏感网络完成签到,获得积分20
20秒前
kh453发布了新的文献求助10
20秒前
20秒前
子爵木完成签到 ,获得积分10
20秒前
HC发布了新的文献求助30
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808