已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PepFormer: End-to-End Transformer-Based Siamese Network to Predict and Enhance Peptide Detectability Based on Sequence Only

判别式 人工智能 变压器 水准点(测量) 计算机科学 一般化 源代码 机器学习 端到端原则 化学 地理 大地测量学 电压 数学分析 物理 操作系统 量子力学 数学
作者
Hao Cheng,B. Dharma Rao,Lei Liu,Lizhen Cui,Guobao Xiao,Ran Su,Leyi Wei
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (16): 6481-6490 被引量:49
标识
DOI:10.1021/acs.analchem.1c00354
摘要

The detectability of peptides is fundamentally important in shotgun proteomics experiments. At present, there are many computational methods to predict the detectability of peptides based on sequential composition or physicochemical properties, but they all have various shortcomings. Here, we present PepFormer, a novel end-to-end Siamese network coupled with a hybrid architecture of a Transformer and gated recurrent units that is able to predict the peptide detectability based on peptide sequences only. Specially, we, for the first time, use contrastive learning and construct a new loss function for model training, greatly improving the generalization ability of our predictive model. Comparative results demonstrate that our model performs significantly better than state-of-the-art methods on benchmark data sets in two species (Homo sapiens and Mus musculus). To make the model more interpretable, we further investigate the embedded representations of peptide sequences automatically learnt from our model, and the visualization results indicate that our model can efficiently capture high-latent discriminative information, improving the predictive performance. In addition, our model shows a strong ability of cross-species transfer learning and adaptability, demonstrating that it has great potential in robust prediction of peptides detectability on different species. The source code of our proposed method can be found via https://github.com/WLYLab/PepFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴静竹发布了新的文献求助50
1秒前
2秒前
化学狗仔发布了新的文献求助10
2秒前
七七发布了新的文献求助10
2秒前
2秒前
Owen应助Zxc采纳,获得10
3秒前
欢喜的皮卡丘完成签到,获得积分10
3秒前
无极微光应助大气板栗采纳,获得20
3秒前
4秒前
fff发布了新的文献求助10
5秒前
6秒前
文静荟完成签到,获得积分10
7秒前
chenren发布了新的文献求助10
7秒前
会思考的狐狸完成签到 ,获得积分10
8秒前
8秒前
8秒前
disjustar发布了新的文献求助200
9秒前
追寻的沛白完成签到,获得积分10
10秒前
Nikki发布了新的文献求助10
10秒前
吃花蝴蝶吗完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
岳小龙完成签到 ,获得积分10
13秒前
钼yanghua发布了新的文献求助10
13秒前
Altria关注了科研通微信公众号
13秒前
muchinyao完成签到,获得积分20
14秒前
完美世界应助追寻的沛白采纳,获得10
14秒前
明亮盼望发布了新的文献求助10
15秒前
15秒前
化学狗仔完成签到,获得积分10
15秒前
ccc曹完成签到,获得积分10
15秒前
六沉发布了新的文献求助10
16秒前
16秒前
fff完成签到,获得积分20
17秒前
小桂园发布了新的文献求助10
17秒前
18秒前
18秒前
sci来来来发布了新的文献求助10
19秒前
Zxc发布了新的文献求助10
19秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449426
求助须知:如何正确求助?哪些是违规求助? 4557549
关于积分的说明 14263960
捐赠科研通 4480642
什么是DOI,文献DOI怎么找? 2454498
邀请新用户注册赠送积分活动 1445233
关于科研通互助平台的介绍 1421016