PepFormer: End-to-End Transformer-Based Siamese Network to Predict and Enhance Peptide Detectability Based on Sequence Only

判别式 人工智能 变压器 水准点(测量) 计算机科学 一般化 源代码 机器学习 端到端原则 化学 数学分析 物理 数学 大地测量学 量子力学 地理 操作系统 电压
作者
Hao Cheng,B. Dharma Rao,Lei Liu,Lizhen Cui,Guobao Xiao,Ran Su,Leyi Wei
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (16): 6481-6490 被引量:49
标识
DOI:10.1021/acs.analchem.1c00354
摘要

The detectability of peptides is fundamentally important in shotgun proteomics experiments. At present, there are many computational methods to predict the detectability of peptides based on sequential composition or physicochemical properties, but they all have various shortcomings. Here, we present PepFormer, a novel end-to-end Siamese network coupled with a hybrid architecture of a Transformer and gated recurrent units that is able to predict the peptide detectability based on peptide sequences only. Specially, we, for the first time, use contrastive learning and construct a new loss function for model training, greatly improving the generalization ability of our predictive model. Comparative results demonstrate that our model performs significantly better than state-of-the-art methods on benchmark data sets in two species (Homo sapiens and Mus musculus). To make the model more interpretable, we further investigate the embedded representations of peptide sequences automatically learnt from our model, and the visualization results indicate that our model can efficiently capture high-latent discriminative information, improving the predictive performance. In addition, our model shows a strong ability of cross-species transfer learning and adaptability, demonstrating that it has great potential in robust prediction of peptides detectability on different species. The source code of our proposed method can be found via https://github.com/WLYLab/PepFormer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
求助人员发布了新的文献求助10
1秒前
练习者完成签到,获得积分10
1秒前
涛声依旧发布了新的文献求助10
1秒前
2秒前
姚姚完成签到,获得积分10
2秒前
汉堡包应助咦yiyi采纳,获得10
2秒前
ti完成签到,获得积分10
2秒前
曾馨慧发布了新的文献求助10
2秒前
万惜文完成签到,获得积分10
3秒前
3秒前
悲凉的便当完成签到,获得积分10
3秒前
躞蹀完成签到,获得积分10
3秒前
核桃应助tkx是流氓兔采纳,获得30
3秒前
3秒前
文静的依萱完成签到,获得积分10
3秒前
3秒前
4秒前
酷波er应助邓木木采纳,获得10
4秒前
123完成签到,获得积分10
4秒前
柳星夜完成签到,获得积分10
4秒前
Rez完成签到,获得积分10
4秒前
5秒前
lucx发布了新的文献求助10
6秒前
泡沫完成签到,获得积分10
6秒前
朱文韬发布了新的文献求助10
6秒前
6秒前
6秒前
禾沐发布了新的文献求助10
7秒前
7秒前
时尚数据线完成签到,获得积分10
7秒前
桃子完成签到,获得积分10
7秒前
7秒前
8秒前
科目三应助yexing采纳,获得10
8秒前
8秒前
jiayoujijin发布了新的文献求助10
8秒前
耶啵发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512216
求助须知:如何正确求助?哪些是违规求助? 4606600
关于积分的说明 14500450
捐赠科研通 4542054
什么是DOI,文献DOI怎么找? 2488803
邀请新用户注册赠送积分活动 1470901
关于科研通互助平台的介绍 1443089