Deep learning of HIV field-based rapid tests

深度学习 人工智能 假阳性悖论 目视检查 机器学习 劳动力 计算机科学 医学 经济增长 经济
作者
Valérian Turbé,Carina Herbst,Thobeka Mngomezulu,Sepehr Meshkinfamfard,Nondumiso Dlamini,Thembani Mhlongo,Theresa Smit,Valeriia Cherepanova,Koki Shimada,Jobie Budd,Nestor Arsenov,Steven Gray,Deenan Pillay,Kobus Herbst,Maryam Shahmanesh,Rachel A. McKendry
出处
期刊:Nature Medicine [Springer Nature]
卷期号:27 (7): 1165-1170 被引量:66
标识
DOI:10.1038/s41591-021-01384-9
摘要

Although deep learning algorithms show increasing promise for disease diagnosis, their use with rapid diagnostic tests performed in the field has not been extensively tested. Here we use deep learning to classify images of rapid human immunodeficiency virus (HIV) tests acquired in rural South Africa. Using newly developed image capture protocols with the Samsung SM-P585 tablet, 60 fieldworkers routinely collected images of HIV lateral flow tests. From a library of 11,374 images, deep learning algorithms were trained to classify tests as positive or negative. A pilot field study of the algorithms deployed as a mobile application demonstrated high levels of sensitivity (97.8%) and specificity (100%) compared with traditional visual interpretation by humans-experienced nurses and newly trained community health worker staff-and reduced the number of false positives and false negatives. Our findings lay the foundations for a new paradigm of deep learning-enabled diagnostics in low- and middle-income countries, termed REASSURED diagnostics1, an acronym for real-time connectivity, ease of specimen collection, affordable, sensitive, specific, user-friendly, rapid, equipment-free and deliverable. Such diagnostics have the potential to provide a platform for workforce training, quality assurance, decision support and mobile connectivity to inform disease control strategies, strengthen healthcare system efficiency and improve patient outcomes and outbreak management in emerging infections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
轻松完成签到,获得积分10
3秒前
充电宝应助pyt采纳,获得10
3秒前
4秒前
00l发布了新的文献求助10
5秒前
也好应助文件撤销了驳回
5秒前
明理平文完成签到 ,获得积分10
6秒前
风子完成签到,获得积分10
6秒前
9秒前
9秒前
10秒前
wanfeng发布了新的文献求助10
10秒前
帅过彭于晏完成签到,获得积分10
10秒前
余一台完成签到 ,获得积分10
10秒前
11秒前
123完成签到,获得积分10
11秒前
11秒前
Wander完成签到,获得积分10
12秒前
hc发布了新的文献求助10
12秒前
lijiauyi1994完成签到,获得积分10
13秒前
特务兔完成签到,获得积分10
14秒前
Jasper应助上火的小番茄采纳,获得10
15秒前
15秒前
15秒前
搜集达人应助00l采纳,获得10
16秒前
99完成签到,获得积分10
16秒前
奶油泡fu发布了新的文献求助10
17秒前
yyjw发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
抗体小王发布了新的文献求助10
20秒前
JJ完成签到,获得积分10
20秒前
慕青应助孤独的凌文采纳,获得10
20秒前
莫大发布了新的文献求助10
21秒前
22秒前
Jinyi发布了新的文献求助10
23秒前
儒雅的焦完成签到,获得积分10
23秒前
Lucas应助冷酷的靖荷采纳,获得10
23秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206956
求助须知:如何正确求助?哪些是违规求助? 2856304
关于积分的说明 8104016
捐赠科研通 2521498
什么是DOI,文献DOI怎么找? 1354593
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613292