亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Metric Learning for K Nearest Neighbor Classication

计算机科学 稳健性(进化) 判别式 卷积神经网络 k-最近邻算法 降维 人工智能 模式识别(心理学) 公制(单位) 机器学习 数据挖掘 生物化学 化学 运营管理 经济 基因
作者
Tingting Liao,Zhen Lei,Tianqing Zhu,Shan Zeng,Yaqin Li,Yuan Cao
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:4
标识
DOI:10.1109/tkde.2021.3090275
摘要

KNN has gained popularity in machine learning due to its simplicity and good performance. However, kNN faces two problems with classification tasks. The first is that an appropriate distance measurement is required to compute distances between test sample and training samples. The other is the highly computational complexity due to the requirement of searching the nearest neighbors in the whole training data. In order to mitigate these two problems, we propose a novel method named KCNN to enhance the performance of kNN. KCNN uses convolutional neural networks to learn a suitable distance metric as well as prototype reduction to learn a reduced set of prototypes which can represent the original set. It has several superiorities compared with related methods. The combination of CNN and kNN empowers it to extract discriminative hierarchical features with which kNN can easily classify. KCNN learns spatial information on an image instead of considering it as a vector to learn distance metric. Moreover, KCNN simultaneously learns a reduced set of prototypes, which help improve classification efficiency and avoid noisy samples of the massive training set. The proposed method has a better robustness and convergence than CNN, especially when projecting input data into a low-dimension space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kenti2023完成签到 ,获得积分10
1秒前
4秒前
9秒前
暴躁的依秋完成签到,获得积分20
10秒前
Kevin完成签到,获得积分20
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
16秒前
ding应助奋斗夏旋采纳,获得10
21秒前
21秒前
28秒前
29秒前
瑞曦完成签到 ,获得积分10
29秒前
俊逸吐司完成签到,获得积分10
31秒前
32秒前
42秒前
42秒前
小糖完成签到 ,获得积分10
43秒前
48秒前
iii完成签到 ,获得积分10
49秒前
kh关闭了kh文献求助
53秒前
车水完成签到 ,获得积分10
53秒前
54秒前
科研通AI2S应助俊逸吐司采纳,获得10
59秒前
1分钟前
龙骑士25完成签到 ,获得积分10
1分钟前
1分钟前
yyds发布了新的文献求助10
1分钟前
1分钟前
1分钟前
年轻的凝云完成签到 ,获得积分10
1分钟前
yyds发布了新的文献求助10
1分钟前
Dani完成签到,获得积分10
1分钟前
1分钟前
Ava应助阿欢采纳,获得10
1分钟前
Benhnhk21完成签到,获得积分10
1分钟前
yyds发布了新的文献求助10
1分钟前
1分钟前
小二郎应助rht采纳,获得10
1分钟前
褚青筠发布了新的文献求助10
1分钟前
忧心的沁发布了新的文献求助10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229656
求助须知:如何正确求助?哪些是违规求助? 2877200
关于积分的说明 8198399
捐赠科研通 2544631
什么是DOI,文献DOI怎么找? 1374517
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621749