Deep Metric Learning for K Nearest Neighbor Classication

计算机科学 稳健性(进化) 判别式 卷积神经网络 k-最近邻算法 降维 人工智能 模式识别(心理学) 大边距最近邻 公制(单位) 人工神经网络 机器学习 数据挖掘 化学 运营管理 经济 基因 生物化学
作者
Tingting Liao,Zhen Lei,Tianqing Zhu,Shan Zeng,Yaqin Li,Yuan Cao
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:14
标识
DOI:10.1109/tkde.2021.3090275
摘要

KNN has gained popularity in machine learning due to its simplicity and good performance. However, kNN faces two problems with classification tasks. The first is that an appropriate distance measurement is required to compute distances between test sample and training samples. The other is the highly computational complexity due to the requirement of searching the nearest neighbors in the whole training data. In order to mitigate these two problems, we propose a novel method named KCNN to enhance the performance of kNN. KCNN uses convolutional neural networks to learn a suitable distance metric as well as prototype reduction to learn a reduced set of prototypes which can represent the original set. It has several superiorities compared with related methods. The combination of CNN and kNN empowers it to extract discriminative hierarchical features with which kNN can easily classify. KCNN learns spatial information on an image instead of considering it as a vector to learn distance metric. Moreover, KCNN simultaneously learns a reduced set of prototypes, which help improve classification efficiency and avoid noisy samples of the massive training set. The proposed method has a better robustness and convergence than CNN, especially when projecting input data into a low-dimension space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
to高坚果发布了新的文献求助10
2秒前
2秒前
CH发布了新的文献求助10
2秒前
4秒前
o10完成签到,获得积分20
4秒前
淡定海亦发布了新的文献求助10
5秒前
鹅鹅鹅完成签到,获得积分10
5秒前
jnfy完成签到,获得积分10
6秒前
科科克尔克完成签到 ,获得积分10
7秒前
o10发布了新的文献求助10
8秒前
火星上的羽毛应助怪杰采纳,获得10
10秒前
10秒前
阔达的寻菡完成签到,获得积分10
10秒前
SYLH应助to高坚果采纳,获得10
12秒前
酷小裤发布了新的文献求助10
13秒前
淡定海亦完成签到,获得积分10
14秒前
15秒前
16秒前
asdsfz发布了新的文献求助10
17秒前
上官若男应助star采纳,获得10
17秒前
18秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
ajun完成签到,获得积分10
22秒前
帅气的襄发布了新的文献求助10
22秒前
FartKing发布了新的文献求助20
23秒前
浊人完成签到,获得积分10
25秒前
眼睛大的电脑完成签到 ,获得积分10
26秒前
27秒前
29秒前
30秒前
每天都在找完成签到,获得积分10
31秒前
高兴123发布了新的文献求助30
31秒前
JINITAIMEI发布了新的文献求助30
32秒前
tianqing完成签到,获得积分10
32秒前
32秒前
希望天下0贩的0应助asdsfz采纳,获得10
34秒前
acorn发布了新的文献求助10
35秒前
是玥玥啊发布了新的文献求助10
36秒前
大模型应助dhh采纳,获得10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952508
求助须知:如何正确求助?哪些是违规求助? 3497869
关于积分的说明 11089256
捐赠科研通 3228427
什么是DOI,文献DOI怎么找? 1784869
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309