Assessment and correction of BCC_CSM's performance in capturing leading modes of summer precipitation over North Asia

气候学 降水 环境科学 大气科学 地质学 气象学 地理
作者
Zhiqiang Gong,Muhammad Mubashar Dogar,Shaobo Qiao,Peng Hu,Guolin Feng
出处
期刊:International Journal of Climatology [Wiley]
卷期号:38 (5): 2201-2214 被引量:16
标识
DOI:10.1002/joc.5327
摘要

ABSTRACT This article examines the ability of Beijing Climate Center Climate System Model (BCC_CSM) in demonstrating the prediction accuracy and the leading modes of the summer precipitation over North Asia (NA). A dynamic‐statistic combined approach for improving the prediction accuracy and the prediction of the leading modes of the summer precipitation over NA is proposed. Our results show that the BCC_CSM can capture part of the spatial anomaly features of the first two leading modes of NA summer precipitation. Moreover, BCC_CSM regains relationships such that the first and second mode of the empirical orthogonal function (EOF1 and EOF2) of NA summer precipitation, respectively, corresponds to the development of the El Niño and La Niña conditions in the tropical East Pacific. Nevertheless, BCC_CSM exhibits limited prediction skill over most part of NA and presents a deficiency in reproducing the EOF1's and EOF2's spatial pattern over central NA and EOF2's interannual variability. This can be attributed as the possible reasons why the model is unable to capture the correct relationships among the basic climate elements over the central NA, lacks in its ability to reproduce a consistent zonal atmospheric pattern over NA, and has bias in predicting the relevant Sea Surface Temperature (SST) modes over the tropical Pacific and Indian Ocean regions. Based on the proposed dynamic‐statistic combined correction approach, compared with the leading modes of BCC_CSM's original prediction, anomaly correlation coefficients of corrected EOF1/EOF2 with the tropical Indian Ocean SST are improved from 0.18/0.36 to 0.51/0.62. Hence, the proposed correction approach suggests that the BCC_CSM's prediction skill for the summer precipitation prediction over NA and its ability to capture the dominant modes could be certainly improved by choosing proper historical analogue information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkscanl完成签到 ,获得积分10
刚刚
2秒前
喜悦酸奶发布了新的文献求助10
2秒前
3秒前
4秒前
6秒前
科研微微发布了新的文献求助10
6秒前
十八完成签到 ,获得积分10
7秒前
tanliulong发布了新的文献求助10
8秒前
科目三应助呆萌代桃采纳,获得10
9秒前
周路飞完成签到,获得积分20
10秒前
SCI的芷蝶发布了新的文献求助10
11秒前
13秒前
大饼发布了新的文献求助10
13秒前
科研微微完成签到,获得积分10
14秒前
独特绣连发布了新的文献求助10
15秒前
17秒前
17秒前
18秒前
DLL完成签到,获得积分10
18秒前
20秒前
燕子应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得10
20秒前
20秒前
斯文败类应助科研通管家采纳,获得30
21秒前
21秒前
完美世界应助Jnest采纳,获得10
21秒前
三哥哥w发布了新的文献求助10
22秒前
22秒前
呆萌代桃发布了新的文献求助10
24秒前
科研通AI2S应助独特绣连采纳,获得10
24秒前
兴奋千兰发布了新的文献求助10
25秒前
爱鹏鹏耶完成签到,获得积分10
25秒前
songnvshi发布了新的文献求助10
27秒前
YuF发布了新的文献求助10
27秒前
司徒元瑶完成签到 ,获得积分10
27秒前
29秒前
科研通AI2S应助黄金天下采纳,获得10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316318
求助须知:如何正确求助?哪些是违规求助? 2948031
关于积分的说明 8539036
捐赠科研通 2624019
什么是DOI,文献DOI怎么找? 1435691
科研通“疑难数据库(出版商)”最低求助积分说明 665670
邀请新用户注册赠送积分活动 651532