已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reinforcement learning approach for coordinated passenger inflow control of urban rail transit in peak hours

流入 强化学习 控制(管理) 运输工程 城市轨道交通 钢筋 体积热力学 计算机科学 工程类 机械 量子力学 结构工程 物理 人工智能
作者
Zhibin Jiang,Wei Fan,Wei Liu,Bingqin Zhu,Jinjing Gu
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:88: 1-16 被引量:105
标识
DOI:10.1016/j.trc.2018.01.008
摘要

Abstract In peak hours, when the limited transportation capacity of urban rail transit is not adequate enough to meet the travel demands, the density of the passengers waiting at the platform can exceed the critical density of the platform. Coordinated passenger inflow control strategy is required to adjust/meter the inflow volume and relieve some of the demand pressure at crowded metro stations so as to ensure both operational efficiency and safety at such stations for all passengers. However, such strategy is usually developed by the operation staff at each station based on their practical working experience. As such, the best strategy/decision cannot always be made and sometimes can even be highly undesirable due to their inability to account for the dynamic performance of all metro stations in the entire rail transit network. In this paper, a new reinforcement learning-based method is developed to optimize the inflow volume during a certain period of time at each station with the aim of minimizing the safety risks imposed on passengers at the metro stations. Basic principles and fundamental components of the reinforcement learning, as well as the reinforcement learning-based problem-specific algorithm are presented. The simulation experiment carried out on a real-world metro line in Shanghai is constructed to test the performance of the approach. Simulation results show that the reinforcement learning-based inflow volume control strategy is highly effective in minimizing the safety risks by reducing the frequency of passengers being stranded. Additionally, the strategy also helps to relieve the passenger congestion at certain stations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助李绿真采纳,获得30
1秒前
BGRC131031完成签到,获得积分10
1秒前
仇谷槐完成签到,获得积分20
2秒前
2秒前
chcmuer完成签到,获得积分10
3秒前
3秒前
qwerty123发布了新的文献求助10
3秒前
3秒前
乐观寄真完成签到 ,获得积分10
4秒前
weiziho发布了新的文献求助10
5秒前
px发布了新的文献求助40
7秒前
微风418发布了新的文献求助20
8秒前
8秒前
超级雅霜发布了新的文献求助10
9秒前
12秒前
13秒前
阿恺完成签到,获得积分20
13秒前
大树守卫完成签到,获得积分10
13秒前
14秒前
科研发布了新的文献求助10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
乐乐应助科研通管家采纳,获得200
15秒前
15秒前
所所应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
lin发布了新的文献求助10
17秒前
17秒前
20秒前
好好好完成签到 ,获得积分10
20秒前
22秒前
23秒前
研友_LMBPXn发布了新的文献求助10
23秒前
科研完成签到,获得积分20
25秒前
自然完成签到,获得积分10
26秒前
追寻的青亦完成签到,获得积分10
26秒前
26秒前
121314wld发布了新的文献求助10
31秒前
33秒前
Jasper应助风趣的惜天采纳,获得10
36秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129961
求助须知:如何正确求助?哪些是违规求助? 2780706
关于积分的说明 7749763
捐赠科研通 2436010
什么是DOI,文献DOI怎么找? 1294449
科研通“疑难数据库(出版商)”最低求助积分说明 623673
版权声明 600570