生物地球化学
污水
环境科学
污染
海洋学
水污染
水资源管理
渔业
环境保护
水文学(农业)
环境工程
生态学
地质学
生物
岩土工程
标识
DOI:10.1016/j.marpolbul.2018.01.046
摘要
The Indian River Lagoon (IRL) system, a poorly flushed 240 km long estuary in east-central Florida (USA), previously received 200 MLD of point source municipal wastewater that was largely mitigated by the mid-1990's. Since then, non-point source loads, including septic tank effluent, have become more important. Seventy sites were sampled for bloom-forming macroalgae and analyzed for δ15N, % nitrogen, % phosphorus, carbon:nitrogen, carbon:phosphorus, and nitrogen:phosphorus ratios. Data were fitted to geospatial models showing elevated δ15N values (>+5‰), matching human wastewater in most of the IRL system, with elevated enrichment (δ15N ≥ +7‰ to +10‰) in urbanized portions of the central IRL and Banana River Lagoon. Results suggest increased mobilization of OSDS NH4+ during the wetter 2014 season. Resource managers must improve municipal wastewater treatment infrastructure and commence significant septic-to-sewer conversion to mitigate nitrogen over-enrichment, water quality decline and habitat loss as mandated in the Tampa and Sarasota Bays and the Florida Keys.
科研通智能强力驱动
Strongly Powered by AbleSci AI