MCDA swing weighting and discrete choice experiments for elicitation of patient benefit‐risk preferences: a critical assessment

代表性启发 加权 启发式 样品(材料) 背景(考古学) 计算机科学 偏爱 认知 内部有效性 医学 机器学习 统计 心理学 社会心理学 精神科 化学 古生物学 病理 放射科 操作系统 生物 色谱法 数学
作者
Tommi Tervonen,Heather L. Gelhorn,Sumitra Sri Bhashyam,Jiat Ling Poon,Katharine S. Gries,Anne M. Rentz,Kevin Marsh
出处
期刊:Pharmacoepidemiology and Drug Safety [Wiley]
卷期号:26 (12): 1483-1491 被引量:49
标识
DOI:10.1002/pds.4255
摘要

Abstract Purpose Multiple criteria decision analysis swing weighting (SW) and discrete choice experiments (DCE) are appropriate methods for capturing patient preferences on treatment benefit‐risk trade‐offs. This paper presents a qualitative comparison of the 2 methods. Methods We review and critically assess similarities and differences of SW and DCE based on 6 aspects: comprehension by study participants, cognitive biases, sample representativeness, ability to capture heterogeneity in preferences, reliability and validity, and robustness of the results. Results The SW choice task can be more difficult, but the workshop context in which SW is conducted may provide more support to patients who are unfamiliar with the end points being evaluated or who have cognitive impairments. Both methods are similarly prone to a number of biases associated with preference elicitation, and DCE is prone to simplifying heuristics, which limits its application with large number of attributes. The low cost per patient of the DCE means that it can be better at achieving a representative sample, though SW does not require such large sample sizes due to exact nature of the collected preference data. This also means that internal validity is automatically enforced with SW, while the internal validity of DCE results needs to be assessed manually. Conclusions Choice between the 2 methods depends on characteristics of the benefit‐risk assessment, especially on how difficult the trade‐offs are for the patients to make and how many patients are available. Although there exist some empirical studies on many of the evaluation aspects, critical evidence gaps remain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮念真完成签到,获得积分10
刚刚
peaches发布了新的文献求助10
1秒前
2秒前
2秒前
user_殳完成签到,获得积分10
2秒前
4秒前
香蕉觅云应助酒洌采纳,获得20
4秒前
自信紫青发布了新的文献求助20
4秒前
5秒前
深情安青应助啦啦啦啦采纳,获得10
5秒前
wentong发布了新的文献求助10
5秒前
激昂的老姆完成签到,获得积分20
6秒前
7秒前
9秒前
风趣穆发布了新的文献求助10
9秒前
jmg03发布了新的文献求助10
10秒前
10秒前
11秒前
FashionBoy应助peaches采纳,获得10
13秒前
13秒前
尼卡应助非8960采纳,获得20
13秒前
戴哈哈完成签到 ,获得积分10
15秒前
yl完成签到,获得积分10
18秒前
un完成签到,获得积分10
18秒前
pjh发布了新的文献求助10
19秒前
21秒前
丘比特应助椰椰采纳,获得10
21秒前
在水一方应助椰椰采纳,获得10
21秒前
赘婿应助椰椰采纳,获得10
21秒前
研友_VZG7GZ应助椰椰采纳,获得10
21秒前
万能图书馆应助椰椰采纳,获得10
21秒前
爆米花应助椰椰采纳,获得10
21秒前
Ava应助椰椰采纳,获得10
22秒前
劫月完成签到,获得积分10
22秒前
24秒前
24秒前
24秒前
25秒前
眼睛大的小蚂蚁完成签到 ,获得积分10
27秒前
ZQ发布了新的文献求助10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526144
求助须知:如何正确求助?哪些是违规求助? 3106527
关于积分的说明 9280744
捐赠科研通 2804127
什么是DOI,文献DOI怎么找? 1539278
邀请新用户注册赠送积分活动 716514
科研通“疑难数据库(出版商)”最低求助积分说明 709495