富营养化
中观
环境科学
营养物
甲烷
全球变暖
温室气体
气候变化
环境化学
生态学
大气科学
水文学(农业)
化学
生物
地质学
岩土工程
作者
Thomas A. Davidson,Joachim Audet,Erik Jeppesen,Frank Landkildehus,Torben L. Lauridsen,Martin Søndergaard,Jari Syväranta
标识
DOI:10.1038/s41558-017-0063-z
摘要
Lakes and ponds are important natural sources of the potent greenhouse gas methane (CH4), with small shallow waters identified as particular hotspots1,2. Ebullition (bubbles) of CH4 makes up a large proportion of total CH4 flux3,4. However, difficulty measuring such episodic events
5
makes prediction of how ebullition responds to nutrient enrichment and rising temperatures challenging. Here, the world’s longest running, mesocosm-based, shallow lake climate change experiment was used to investigate how the combination of warming and eutrophication (that is, nutrient enrichment) affects CH4 ebullition. Eutrophication without heating increased the relative contribution of ebullition from 51% to 75%. More strikingly the combination of nutrient enrichment and experimental warming treatments of +2–3 °C and +4–5 °C had a synergistic effect, increasing mean annual ebullition by at least 1900 mg CH4-C m−2 yr−1. In contrast, diffusive flux showed no response to eutrophication and only a small increase at higher temperatures (average 63 mg CH4–C m−2 yr−1). As shallow lakes are the most common lake type globally, abundant in highly climate sensitive regions
6
and most vulnerable to eutrophication, these results suggest their current and future contributions to atmospheric CH4 concentrations may be significantly underestimated. The combination of nutrient enrichment and warming has a synergistic effect on rates of methane ebullition from experimental lakes. This suggests methane emissions from shallow lakes may be significantly underestimated.
科研通智能强力驱动
Strongly Powered by AbleSci AI