Information Extraction

萃取(化学) 计算机科学 化学 色谱法
作者
Sunita Sarawagi
出处
期刊:Foundations and Trends in Databases [Now Publishers]
卷期号:1 (3): 261-377 被引量:622
标识
DOI:10.1561/1900000003
摘要

The automatic extraction of information from unstructured sources has opened up new avenues for querying, organizing, and analyzing data by drawing upon the clean semantics of structured databases and the abundance of unstructured data. The field of information extraction has its genesis in the natural language processing community where the primary impetus came from competitions centered around the recognition of named entities like people names and organization from news articles. As society became more data oriented with easy online access to both structured and unstructured data, new applications of structure extraction came around. Now, there is interest in converting our personal desktops to structured databases, the knowledge in scientific publications to structured records, and harnessing the Internet for structured fact finding queries. Consequently, there are many different communities of researchers bringing in techniques from machine learning, databases, information retrieval, and computational linguistics for various aspects of the information extraction problem. This review is a survey of information extraction research of over two decades from these diverse communities. We create a taxonomy of the field along various dimensions derived from the nature of the extraction task, the techniques used for extraction, the variety of input resources exploited, and the type of output produced. We elaborate on rule-based and statistical methods for entity and relationship extraction. In each case we highlight the different kinds of models for capturing the diversity of clues driving the recognition process and the algorithms for training and efficiently deploying the models. We survey techniques for optimizing the various steps in an information extraction pipeline, adapting to dynamic data, integrating with existing entities and handling uncertainty in the extraction process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emma发布了新的文献求助10
刚刚
huishi105发布了新的文献求助10
1秒前
1秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
收拾收拾应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
916应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
yar应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
收拾收拾应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
坦率耳机应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得20
4秒前
916应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
hohn完成签到,获得积分10
6秒前
7秒前
dalian完成签到,获得积分10
7秒前
nzxnzx发布了新的文献求助10
7秒前
7秒前
Exc完成签到,获得积分0
8秒前
ddd完成签到,获得积分10
8秒前
祖冰绿完成签到,获得积分20
8秒前
金22完成签到,获得积分10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650