Information Extraction

萃取(化学) 计算机科学 化学 色谱法
作者
Sunita Sarawagi
出处
期刊:Foundations and Trends in Databases [Now Publishers]
卷期号:1 (3): 261-377 被引量:622
标识
DOI:10.1561/1900000003
摘要

The automatic extraction of information from unstructured sources has opened up new avenues for querying, organizing, and analyzing data by drawing upon the clean semantics of structured databases and the abundance of unstructured data. The field of information extraction has its genesis in the natural language processing community where the primary impetus came from competitions centered around the recognition of named entities like people names and organization from news articles. As society became more data oriented with easy online access to both structured and unstructured data, new applications of structure extraction came around. Now, there is interest in converting our personal desktops to structured databases, the knowledge in scientific publications to structured records, and harnessing the Internet for structured fact finding queries. Consequently, there are many different communities of researchers bringing in techniques from machine learning, databases, information retrieval, and computational linguistics for various aspects of the information extraction problem. This review is a survey of information extraction research of over two decades from these diverse communities. We create a taxonomy of the field along various dimensions derived from the nature of the extraction task, the techniques used for extraction, the variety of input resources exploited, and the type of output produced. We elaborate on rule-based and statistical methods for entity and relationship extraction. In each case we highlight the different kinds of models for capturing the diversity of clues driving the recognition process and the algorithms for training and efficiently deploying the models. We survey techniques for optimizing the various steps in an information extraction pipeline, adapting to dynamic data, integrating with existing entities and handling uncertainty in the extraction process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靓丽念薇完成签到,获得积分10
1秒前
icewuwu完成签到,获得积分10
1秒前
谨慎代芙发布了新的文献求助10
1秒前
赘婿应助南苏采纳,获得10
3秒前
WenJun完成签到,获得积分10
4秒前
FashionBoy应助申熙辰采纳,获得10
6秒前
在水一方应助古月采纳,获得10
10秒前
Jasper应助ATOM采纳,获得10
11秒前
wanci应助嘻嘻采纳,获得10
16秒前
Fiona完成签到 ,获得积分10
17秒前
ding应助直率的往事采纳,获得10
18秒前
余琳完成签到,获得积分10
18秒前
19秒前
bwbw完成签到 ,获得积分10
20秒前
遗迹小白完成签到,获得积分10
20秒前
雨辰完成签到 ,获得积分10
20秒前
tom完成签到,获得积分20
23秒前
整齐千柳发布了新的文献求助10
24秒前
meimei完成签到 ,获得积分10
25秒前
佳言2009完成签到,获得积分10
28秒前
gyx完成签到 ,获得积分10
31秒前
33秒前
nml关闭了nml文献求助
34秒前
科研通AI2S应助C0cc采纳,获得10
35秒前
大模型应助C0cc采纳,获得10
35秒前
科研通AI2S应助C0cc采纳,获得10
35秒前
leek完成签到 ,获得积分10
36秒前
37秒前
38秒前
hahahaweiwei发布了新的文献求助10
38秒前
Wtony完成签到 ,获得积分10
38秒前
38秒前
南楼小阁主完成签到,获得积分10
39秒前
笨笨的荧荧完成签到 ,获得积分10
39秒前
Lore发布了新的文献求助10
42秒前
嘻嘻发布了新的文献求助10
42秒前
43秒前
至幸发布了新的文献求助10
44秒前
45秒前
英俊的铭应助风趣冰淇淋采纳,获得10
47秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3398156
求助须知:如何正确求助?哪些是违规求助? 3007005
关于积分的说明 8823985
捐赠科研通 2694370
什么是DOI,文献DOI怎么找? 1475902
科研通“疑难数据库(出版商)”最低求助积分说明 682540
邀请新用户注册赠送积分活动 675982