多变过程
压缩性
绝热过程
热力学
指数
粘度
独特性
物理
体积粘度
理想气体
简并能级
热容比
可压缩流
数学分析
数学
机械
量子力学
语言学
哲学
作者
Tao Wang,Huijiang Zhao
标识
DOI:10.1142/s0218202516500524
摘要
We consider the one-dimensional compressible Navier--Stokes system for a viscous and heat-conducting ideal polytropic gas when the viscosity $\mu$ and the heat conductivity $\kappa$ depend on the specific volume $v$ and the temperature $\theta$ and are both proportional to $h(v)\theta^{\alpha}$ for certain non-degenerate smooth function $h$. We prove the existence and uniqueness of a global-in-time non-vacuum solution to its Cauchy problem under certain assumptions on the parameter $\alpha$ and initial data, which imply that the initial data can be large if $|\alpha|$ is sufficiently small. Our result appears to be the first global existence result for general adiabatic exponent and large initial data when the viscosity coefficient depends on both the density and the temperature.
科研通智能强力驱动
Strongly Powered by AbleSci AI