神经毒素
多巴胺能
TRPM7型
细胞生物学
黑质
生物
平衡
致密部
程序性细胞死亡
细胞凋亡
化学
内分泌学
瞬时受体电位通道
受体
生物化学
多巴胺
作者
Yuyang Sun,Pramod Sukumaran,Brij B. Singh
标识
DOI:10.1007/s12035-019-01713-7
摘要
Mg2+ homeostasis is essential for cell survival and the loss of this regulation has been associated with many neurodegenerative diseases, including loss of dopaminergic neurons. Although the neurotoxin-mediated loss of dopaminergic neurons in Parkinson disease models is extensively studied, the ion channel(s) that regulate Mg2+ homeostasis and thus could prevent neuronal cell death is not yet identified. Here, we show that TRPM7 (transient receptor potential melastatin 7) is involved in regulating Mg2+ homeostasis in dopaminergic cells. Importantly, transient loss of TRPM7 decreased intracellular Mg2+ levels and decreased dopaminergic cells/neurons survival. We provide further evidence that both increases in extracellular Mg2+ or transiently increasing TRPM7 levels protected dopaminergic SH-SY5Y cells against neurotoxin-mediated cell death. Neurotoxin treatment significantly decreased TRPM7 levels in both SH-SY5Y cells and the substantia nigra pars compacta region of mice, along with a decrease in Mg2+ influx. Moreover, Mg2+ supplementation showed a concentration-dependent decrease in caspase-3 activity, an increase in cell survival, restored mitochondrial membrane potential, and increase TRPM7 levels in neurotoxin-treated cells. In contrast, transient silencing of TRPM7 inhibited the positive effect of Mg2+ supplementation in protecting against neurotoxins. Whereas, TRPM7 overexpression not only maintained Mg2+ homeostasis but also inhibited caspase 3 activity that induced cell survival. Overall, these results suggest a significant role of TRPM7 channels in Mg2+ homeostasis and the survival of neurotoxin-induced loss of dopaminergic cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI