Towards End-to-End ECG Classification With Raw Signal Extraction and Deep Neural Networks

心跳 人工智能 计算机科学 分类器(UML) 特征提取 深度学习 模式识别(心理学) QRS波群 人工神经网络 语音识别 医学 计算机安全 心脏病学
作者
Sean Shensheng Xu,Man‐Wai Mak,Chi-Chung Cheung
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 1574-1584 被引量:208
标识
DOI:10.1109/jbhi.2018.2871510
摘要

This paper proposes deep learning methods with signal alignment that facilitate the end-to-end classification of raw electrocardiogram (ECG) signals into heartbeat types, i.e., normal beat or different types of arrhythmias. Time-domain sample points are extracted from raw ECG signals, and consecutive vectors are extracted from a sliding time-window covering these sample points. Each of these vectors comprises the consecutive sample points of a complete heartbeat cycle, which includes not only the QRS complex but also the P and T waves. Unlike existing heartbeat classification methods in which medical doctors extract handcrafted features from raw ECG signals, the proposed end-to-end method leverages a deep neural network for both feature extraction and classification based on aligned heartbeats. This strategy not only obviates the need to handcraft the features but also produces optimized ECG representation for heartbeat classification. Evaluations on the MIT-BIH arrhythmia database show that at the same specificity, the proposed patient-independent classifier can detect supraventricular- and ventricular-ectopic beats at a sensitivity that is at least 10% higher than current state-of-the-art methods. More importantly, there is a wide range of operating points in which both the sensitivity and specificity of the proposed classifier are higher than those achieved by state-of-the-art classifiers. The proposed classifier can also perform comparable to patient-specific classifiers, but at the same time enjoys the advantage of patient independence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
账户已注销应助1huiqina采纳,获得30
刚刚
1秒前
专注的安筠关注了科研通微信公众号
1秒前
strings发布了新的文献求助10
1秒前
2秒前
5秒前
朝阳完成签到 ,获得积分10
5秒前
6秒前
Jay完成签到 ,获得积分10
6秒前
yhr发布了新的文献求助10
6秒前
甜甜戎发布了新的文献求助10
6秒前
原鑫完成签到,获得积分10
7秒前
8秒前
wufang给wufang的求助进行了留言
8秒前
majf完成签到,获得积分10
8秒前
左左完成签到,获得积分20
9秒前
生生世世完成签到,获得积分10
9秒前
10秒前
XD发布了新的文献求助10
10秒前
叮咚发布了新的文献求助10
11秒前
gyyzj完成签到,获得积分10
11秒前
11秒前
生生世世发布了新的文献求助10
12秒前
12秒前
左左发布了新的文献求助10
13秒前
顾矜应助塞塞采纳,获得10
13秒前
13秒前
甜甜戎完成签到,获得积分10
15秒前
liuchenyang完成签到 ,获得积分10
15秒前
小二郎应助斯文棒球采纳,获得10
15秒前
15秒前
15秒前
16秒前
17秒前
单薄水壶完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
希望天下0贩的0应助chenwang采纳,获得10
19秒前
wuyuyu5413发布了新的文献求助10
19秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137922
求助须知:如何正确求助?哪些是违规求助? 2788820
关于积分的说明 7788709
捐赠科研通 2445219
什么是DOI,文献DOI怎么找? 1300219
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046