Towards End-to-End ECG Classification With Raw Signal Extraction and Deep Neural Networks

心跳 人工智能 计算机科学 分类器(UML) 特征提取 深度学习 模式识别(心理学) QRS波群 人工神经网络 语音识别 医学 计算机安全 心脏病学
作者
Sean Shensheng Xu,Man‐Wai Mak,Chi-Chung Cheung
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 1574-1584 被引量:212
标识
DOI:10.1109/jbhi.2018.2871510
摘要

This paper proposes deep learning methods with signal alignment that facilitate the end-to-end classification of raw electrocardiogram (ECG) signals into heartbeat types, i.e., normal beat or different types of arrhythmias. Time-domain sample points are extracted from raw ECG signals, and consecutive vectors are extracted from a sliding time-window covering these sample points. Each of these vectors comprises the consecutive sample points of a complete heartbeat cycle, which includes not only the QRS complex but also the P and T waves. Unlike existing heartbeat classification methods in which medical doctors extract handcrafted features from raw ECG signals, the proposed end-to-end method leverages a deep neural network for both feature extraction and classification based on aligned heartbeats. This strategy not only obviates the need to handcraft the features but also produces optimized ECG representation for heartbeat classification. Evaluations on the MIT-BIH arrhythmia database show that at the same specificity, the proposed patient-independent classifier can detect supraventricular- and ventricular-ectopic beats at a sensitivity that is at least 10% higher than current state-of-the-art methods. More importantly, there is a wide range of operating points in which both the sensitivity and specificity of the proposed classifier are higher than those achieved by state-of-the-art classifiers. The proposed classifier can also perform comparable to patient-specific classifiers, but at the same time enjoys the advantage of patient independence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好滴捏发布了新的文献求助10
1秒前
000发布了新的文献求助10
1秒前
3秒前
刘丽梅完成签到 ,获得积分10
9秒前
勤恳的从波关注了科研通微信公众号
9秒前
顾矜应助好滴捏采纳,获得10
10秒前
彭于晏应助好滴捏采纳,获得10
10秒前
11秒前
12秒前
汉堡包应助165410203读书周采纳,获得10
13秒前
13秒前
华仔应助石一采纳,获得10
14秒前
Rt发布了新的文献求助30
15秒前
17秒前
子訡发布了新的文献求助10
17秒前
半枝桃完成签到 ,获得积分10
19秒前
Zjx关闭了Zjx文献求助
20秒前
XFaning发布了新的文献求助10
21秒前
慕青应助古月采纳,获得10
22秒前
小管完成签到,获得积分10
22秒前
小彭完成签到,获得积分10
23秒前
SciGPT应助子訡采纳,获得10
23秒前
23秒前
Akim应助鲍勃采纳,获得10
24秒前
繁荣的凝荷完成签到 ,获得积分10
24秒前
Rt完成签到,获得积分10
24秒前
25秒前
26秒前
夏天发布了新的文献求助10
26秒前
27秒前
27秒前
健忘的沛蓝完成签到 ,获得积分10
28秒前
上将军顺完成签到,获得积分10
28秒前
28秒前
29秒前
小小吒儿发布了新的文献求助10
30秒前
充电宝应助lty采纳,获得10
30秒前
30秒前
小小元风完成签到,获得积分10
30秒前
爆米花应助西门子云采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662