药代动力学
药理学
医学
人口
肺
前列腺
分配量
分布(数学)
环丙沙星
加药
微透析
药品
抗生素
化学
内科学
生物化学
数学分析
中枢神经系统
癌症
环境卫生
数学
作者
E. Zimmermann,Carolina de Miranda Silva,Camila Neris,Bruna Gaelzer Silva Torres,Stephan Schmidt,Teresa Dalla Costa
标识
DOI:10.1016/j.ejps.2018.11.007
摘要
Ciprofloxacin (CIP) is indicated for clinical treatment of urinary and respiratory tract infections. Poor infection site penetration and consequent insufficient exposure to the antimicrobial agent may be the reason for some therapeutic failures. Ciprofloxacin is reported as a substrate for efflux transporters, such as P-glycoprotein, which could be related to the presence of sub-therapeutic drug concentration at the infection site. In the present work we evaluated CIP pharmacokinetics (PK) in plasma and lung and prostate tissues of Wistar rats after intravenous (i.v.) and intratracheal (i.t.) dosing (7 mg/Kg) in the presence and absence of P-gp inhibitor tariquidar (TAR, 15 mg/Kg). Microdialysis was applied to determine free tissue concentration-time profiles and the obtained data were analyzed by non-compartmental and population PK (popPK) analysis. A sequential strategy was used to develop the popPK model: characterization of CIP PK in tissues (Tissue model) was performed subsequently to CIP PK modeling in plasma (Plasma model). Two and three compartmental models were used to simultaneously characterize plasma concentrations after i.t. and i.v. dosing; the distribution model was developed by separating the central compartment into venous and arterial compartment and by adding lung and prostate; TAR was identified as a significant covariate for clearance and volume of distribution of central compartment as well as for inter-compartmental clearance. Our results indicate an impact of P-gp on plasma PK, likely by acting on renal active secretion of CIP. Regarding CIP exposure in lung and prostate tissues, our results suggest a complex interplay between drug transporters; P-gp inhibition by TAR was likely counterbalanced by the activity of other efflux/influx transporters, which could not be fully characterized by our model.
科研通智能强力驱动
Strongly Powered by AbleSci AI