Smallholder maize area and yield mapping at national scales with Google Earth Engine

遥感 环境科学 作物 坦桑尼亚 农业工程 作物产量 卫星图像 像素 随机森林 计算机科学 农学 地理 机器学习 人工智能 林业 生物 环境规划 工程类
作者
Zhenong Jin,George Azzari,Calum You,Stefania Di Tommaso,Stephen Aston,Marshall Burke,David B. Lobell
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:228: 115-128 被引量:286
标识
DOI:10.1016/j.rse.2019.04.016
摘要

Accurate measurements of maize yields at field or subfield scales are useful for guiding agronomic practices and investments and policies for improving food security. Data on smallholder maize systems are currently sparse, but satellite remote sensing offers promise for accelerating learning about these systems. Here we document the use of Google Earth Engine (GEE) to build “wall-to-wall” 10 m resolution maps of (i) cropland presence, (ii) maize presence, and (iii) maize yields for the main 2017 maize season in Kenya and Tanzania. Mapping these outcomes at this scale is extremely challenging because of very heterogeneous landscapes, lack of cloud-free satellite imagery, and the low quantity of quality ground-based data in these regions. First, we computed seasonal median composites of Sentinel-1 radar backscatter and Sentinel-2 optical reflectance measures for each pixel in the region, and used them to build both crop/non-crop and maize/non-maize Random Forest (RF) classifiers. Several thousand crop/non-crop labels were collected through an in-house GEE labeler, and thousands of crop type labels from the 2015–2017 growing seasons were obtained from various sources. Results show that the crop/non-crop classifier successfully identified cropland with over 85% out-of-sample accuracy in both countries, with Sentinel-1 being particularly useful for prediction. Among the cropped pixels, the maize/non-maize classier had an accuracy of 79% in Tanzania and 63% in Kenya. To map maize yields, we build on past work using a scalable crop yield mapper (SCYM) that utilizes simulations from a crop model to train a regression that predicts yields from observations. Here we advance past approaches by (i) grouping simulations by Global Agro-Environmental Stratification (GAES) zones across the two countries, in order to account for landscape heterogeneity, (ii) utilizing gridded datasets on soil and sowing and harvest dates to setup model simulations in a scalable way; and (iii) utilizing all available satellite observations during the growing season in a parsimonious way by using harmonic regression fits implemented in GEE. SCYM estimates were able to capture about 50% of the variation in the yields at the district level in Western Kenya as measured by objective ground-based crop cuts. Finally, we illustrated the utility of our yield maps with two case studies. First, we document the magnitude and interannual variability of spatial heterogeneity of yields in each district, and how it varies for different parts of the region. Second, we combine our estimates with recently released soil databases in the region to investigate the most important soil constraints in the region. Soil factors explain a high fraction (72%) of variation in predicted yields, with the predominant factor being soil nitrogen levels. Overall, this study illustrates the power of combining Sentinel-1 and Sentinel-2 imagery, the GEE platform, and advanced classification and yield mapping algorithms to advance understanding of smallholder agricultural systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾志伟完成签到,获得积分10
2秒前
追寻的续完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
活泼的大船完成签到,获得积分10
8秒前
OeO完成签到 ,获得积分10
9秒前
小学生学免疫完成签到 ,获得积分10
10秒前
jh完成签到 ,获得积分10
14秒前
Ander完成签到 ,获得积分10
15秒前
jin完成签到,获得积分10
16秒前
17秒前
tian完成签到,获得积分10
18秒前
MrChew完成签到 ,获得积分10
19秒前
兴奋的定帮完成签到 ,获得积分0
22秒前
tian发布了新的文献求助10
24秒前
吉祥高趙完成签到 ,获得积分10
24秒前
顺心醉蝶完成签到 ,获得积分10
24秒前
清脆愫完成签到 ,获得积分10
26秒前
留胡子的火完成签到,获得积分10
27秒前
时笙完成签到 ,获得积分10
33秒前
jake完成签到,获得积分10
35秒前
羽化成仙完成签到 ,获得积分10
37秒前
Alone离殇完成签到 ,获得积分10
37秒前
干净山彤完成签到 ,获得积分10
38秒前
鲁路修完成签到,获得积分10
38秒前
huangrui完成签到 ,获得积分10
40秒前
kanong完成签到,获得积分0
43秒前
WW完成签到 ,获得积分10
47秒前
量子星尘发布了新的文献求助30
48秒前
firefly完成签到 ,获得积分10
49秒前
llll完成签到 ,获得积分10
52秒前
蓝桉完成签到 ,获得积分10
54秒前
研友_Z1eDgZ完成签到,获得积分10
58秒前
Amandar完成签到,获得积分10
59秒前
喻雷完成签到 ,获得积分10
59秒前
lilaccalla完成签到 ,获得积分10
1分钟前
舒适的天奇完成签到 ,获得积分10
1分钟前
如意2023完成签到 ,获得积分10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008738
求助须知:如何正确求助?哪些是违规求助? 3548380
关于积分的说明 11298823
捐赠科研通 3283051
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218