亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Smallholder maize area and yield mapping at national scales with Google Earth Engine

遥感 环境科学 作物 坦桑尼亚 农业工程 作物产量 卫星图像 像素 随机森林 计算机科学 农学 地理 机器学习 人工智能 林业 生物 环境规划 工程类
作者
Zhenong Jin,George Azzari,Calum You,Stefania Di Tommaso,Stephen Aston,Marshall Burke,David B. Lobell
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:228: 115-128 被引量:286
标识
DOI:10.1016/j.rse.2019.04.016
摘要

Accurate measurements of maize yields at field or subfield scales are useful for guiding agronomic practices and investments and policies for improving food security. Data on smallholder maize systems are currently sparse, but satellite remote sensing offers promise for accelerating learning about these systems. Here we document the use of Google Earth Engine (GEE) to build “wall-to-wall” 10 m resolution maps of (i) cropland presence, (ii) maize presence, and (iii) maize yields for the main 2017 maize season in Kenya and Tanzania. Mapping these outcomes at this scale is extremely challenging because of very heterogeneous landscapes, lack of cloud-free satellite imagery, and the low quantity of quality ground-based data in these regions. First, we computed seasonal median composites of Sentinel-1 radar backscatter and Sentinel-2 optical reflectance measures for each pixel in the region, and used them to build both crop/non-crop and maize/non-maize Random Forest (RF) classifiers. Several thousand crop/non-crop labels were collected through an in-house GEE labeler, and thousands of crop type labels from the 2015–2017 growing seasons were obtained from various sources. Results show that the crop/non-crop classifier successfully identified cropland with over 85% out-of-sample accuracy in both countries, with Sentinel-1 being particularly useful for prediction. Among the cropped pixels, the maize/non-maize classier had an accuracy of 79% in Tanzania and 63% in Kenya. To map maize yields, we build on past work using a scalable crop yield mapper (SCYM) that utilizes simulations from a crop model to train a regression that predicts yields from observations. Here we advance past approaches by (i) grouping simulations by Global Agro-Environmental Stratification (GAES) zones across the two countries, in order to account for landscape heterogeneity, (ii) utilizing gridded datasets on soil and sowing and harvest dates to setup model simulations in a scalable way; and (iii) utilizing all available satellite observations during the growing season in a parsimonious way by using harmonic regression fits implemented in GEE. SCYM estimates were able to capture about 50% of the variation in the yields at the district level in Western Kenya as measured by objective ground-based crop cuts. Finally, we illustrated the utility of our yield maps with two case studies. First, we document the magnitude and interannual variability of spatial heterogeneity of yields in each district, and how it varies for different parts of the region. Second, we combine our estimates with recently released soil databases in the region to investigate the most important soil constraints in the region. Soil factors explain a high fraction (72%) of variation in predicted yields, with the predominant factor being soil nitrogen levels. Overall, this study illustrates the power of combining Sentinel-1 and Sentinel-2 imagery, the GEE platform, and advanced classification and yield mapping algorithms to advance understanding of smallholder agricultural systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文的难摧完成签到,获得积分10
2秒前
糊涂的中恶完成签到 ,获得积分10
2秒前
Bressanone完成签到,获得积分10
4秒前
8秒前
潮人完成签到 ,获得积分10
10秒前
叶子发布了新的文献求助10
16秒前
ding应助别急我先送采纳,获得10
17秒前
赘婿应助zl采纳,获得10
31秒前
31秒前
青衫完成签到 ,获得积分10
32秒前
41秒前
Cloud应助摸鱼大天才采纳,获得30
44秒前
47秒前
叶子完成签到,获得积分10
57秒前
汉堡包应助可靠的香魔采纳,获得10
1分钟前
Swear完成签到 ,获得积分10
1分钟前
海绵徐完成签到,获得积分10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
霉小欧应助科研通管家采纳,获得10
1分钟前
cjx完成签到,获得积分10
1分钟前
科研一定要通完成签到,获得积分10
1分钟前
Peng丶Young完成签到,获得积分10
1分钟前
1分钟前
1分钟前
wang发布了新的文献求助10
1分钟前
战神林北完成签到,获得积分10
1分钟前
wang完成签到,获得积分10
1分钟前
ZX发布了新的文献求助10
1分钟前
小美酱完成签到 ,获得积分10
2分钟前
2分钟前
手帕很忙完成签到,获得积分10
2分钟前
2分钟前
执着瓜6发布了新的文献求助10
2分钟前
红油曲奇完成签到,获得积分10
2分钟前
2分钟前
彭彭完成签到,获得积分10
2分钟前
Jormungandr发布了新的文献求助10
2分钟前
小王完成签到 ,获得积分10
2分钟前
彭彭发布了新的文献求助10
2分钟前
这个手刹不太灵完成签到 ,获得积分10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133920
求助须知:如何正确求助?哪些是违规求助? 2784804
关于积分的说明 7768626
捐赠科研通 2440175
什么是DOI,文献DOI怎么找? 1297190
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791