亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Smallholder maize area and yield mapping at national scales with Google Earth Engine

遥感 环境科学 作物 坦桑尼亚 农业工程 作物产量 卫星图像 像素 随机森林 计算机科学 农学 地理 机器学习 人工智能 林业 生物 环境规划 工程类
作者
Zhenong Jin,George Azzari,Calum You,Stefania Di Tommaso,Stephen Aston,Marshall Burke,David B. Lobell
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:228: 115-128 被引量:286
标识
DOI:10.1016/j.rse.2019.04.016
摘要

Accurate measurements of maize yields at field or subfield scales are useful for guiding agronomic practices and investments and policies for improving food security. Data on smallholder maize systems are currently sparse, but satellite remote sensing offers promise for accelerating learning about these systems. Here we document the use of Google Earth Engine (GEE) to build “wall-to-wall” 10 m resolution maps of (i) cropland presence, (ii) maize presence, and (iii) maize yields for the main 2017 maize season in Kenya and Tanzania. Mapping these outcomes at this scale is extremely challenging because of very heterogeneous landscapes, lack of cloud-free satellite imagery, and the low quantity of quality ground-based data in these regions. First, we computed seasonal median composites of Sentinel-1 radar backscatter and Sentinel-2 optical reflectance measures for each pixel in the region, and used them to build both crop/non-crop and maize/non-maize Random Forest (RF) classifiers. Several thousand crop/non-crop labels were collected through an in-house GEE labeler, and thousands of crop type labels from the 2015–2017 growing seasons were obtained from various sources. Results show that the crop/non-crop classifier successfully identified cropland with over 85% out-of-sample accuracy in both countries, with Sentinel-1 being particularly useful for prediction. Among the cropped pixels, the maize/non-maize classier had an accuracy of 79% in Tanzania and 63% in Kenya. To map maize yields, we build on past work using a scalable crop yield mapper (SCYM) that utilizes simulations from a crop model to train a regression that predicts yields from observations. Here we advance past approaches by (i) grouping simulations by Global Agro-Environmental Stratification (GAES) zones across the two countries, in order to account for landscape heterogeneity, (ii) utilizing gridded datasets on soil and sowing and harvest dates to setup model simulations in a scalable way; and (iii) utilizing all available satellite observations during the growing season in a parsimonious way by using harmonic regression fits implemented in GEE. SCYM estimates were able to capture about 50% of the variation in the yields at the district level in Western Kenya as measured by objective ground-based crop cuts. Finally, we illustrated the utility of our yield maps with two case studies. First, we document the magnitude and interannual variability of spatial heterogeneity of yields in each district, and how it varies for different parts of the region. Second, we combine our estimates with recently released soil databases in the region to investigate the most important soil constraints in the region. Soil factors explain a high fraction (72%) of variation in predicted yields, with the predominant factor being soil nitrogen levels. Overall, this study illustrates the power of combining Sentinel-1 and Sentinel-2 imagery, the GEE platform, and advanced classification and yield mapping algorithms to advance understanding of smallholder agricultural systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖小羊完成签到 ,获得积分10
1秒前
研友_拓跋戾完成签到,获得积分10
2秒前
韦老虎发布了新的文献求助10
9秒前
13秒前
nbtzy完成签到,获得积分10
17秒前
伏城完成签到 ,获得积分10
22秒前
韦老虎发布了新的文献求助10
42秒前
46秒前
juan完成签到 ,获得积分10
1分钟前
zxcvvbb1001完成签到 ,获得积分10
1分钟前
忘忧Aquarius完成签到,获得积分10
1分钟前
可可完成签到 ,获得积分10
1分钟前
zhang完成签到 ,获得积分10
1分钟前
欧皇完成签到,获得积分20
1分钟前
韦老虎完成签到,获得积分20
1分钟前
苒苒完成签到,获得积分10
2分钟前
MMMMM完成签到,获得积分0
2分钟前
牙牙发布了新的文献求助10
3分钟前
牙牙完成签到,获得积分10
4分钟前
新斯的明的明完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
蜡笔小新完成签到,获得积分10
4分钟前
笨笨山芙完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
6分钟前
Sym发布了新的文献求助10
6分钟前
立行完成签到 ,获得积分10
6分钟前
安静书雁完成签到,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
古铜完成签到 ,获得积分10
8分钟前
契咯完成签到,获得积分10
9分钟前
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889492
求助须知:如何正确求助?哪些是违规求助? 4173503
关于积分的说明 12952128
捐赠科研通 3934941
什么是DOI,文献DOI怎么找? 2159113
邀请新用户注册赠送积分活动 1177464
关于科研通互助平台的介绍 1082384