亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Smallholder maize area and yield mapping at national scales with Google Earth Engine

遥感 环境科学 作物 坦桑尼亚 农业工程 作物产量 卫星图像 像素 随机森林 计算机科学 农学 地理 机器学习 人工智能 林业 生物 环境规划 工程类
作者
Zhenong Jin,George Azzari,Calum You,Stefania Di Tommaso,Stephen Aston,Marshall Burke,David B. Lobell
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:228: 115-128 被引量:286
标识
DOI:10.1016/j.rse.2019.04.016
摘要

Accurate measurements of maize yields at field or subfield scales are useful for guiding agronomic practices and investments and policies for improving food security. Data on smallholder maize systems are currently sparse, but satellite remote sensing offers promise for accelerating learning about these systems. Here we document the use of Google Earth Engine (GEE) to build “wall-to-wall” 10 m resolution maps of (i) cropland presence, (ii) maize presence, and (iii) maize yields for the main 2017 maize season in Kenya and Tanzania. Mapping these outcomes at this scale is extremely challenging because of very heterogeneous landscapes, lack of cloud-free satellite imagery, and the low quantity of quality ground-based data in these regions. First, we computed seasonal median composites of Sentinel-1 radar backscatter and Sentinel-2 optical reflectance measures for each pixel in the region, and used them to build both crop/non-crop and maize/non-maize Random Forest (RF) classifiers. Several thousand crop/non-crop labels were collected through an in-house GEE labeler, and thousands of crop type labels from the 2015–2017 growing seasons were obtained from various sources. Results show that the crop/non-crop classifier successfully identified cropland with over 85% out-of-sample accuracy in both countries, with Sentinel-1 being particularly useful for prediction. Among the cropped pixels, the maize/non-maize classier had an accuracy of 79% in Tanzania and 63% in Kenya. To map maize yields, we build on past work using a scalable crop yield mapper (SCYM) that utilizes simulations from a crop model to train a regression that predicts yields from observations. Here we advance past approaches by (i) grouping simulations by Global Agro-Environmental Stratification (GAES) zones across the two countries, in order to account for landscape heterogeneity, (ii) utilizing gridded datasets on soil and sowing and harvest dates to setup model simulations in a scalable way; and (iii) utilizing all available satellite observations during the growing season in a parsimonious way by using harmonic regression fits implemented in GEE. SCYM estimates were able to capture about 50% of the variation in the yields at the district level in Western Kenya as measured by objective ground-based crop cuts. Finally, we illustrated the utility of our yield maps with two case studies. First, we document the magnitude and interannual variability of spatial heterogeneity of yields in each district, and how it varies for different parts of the region. Second, we combine our estimates with recently released soil databases in the region to investigate the most important soil constraints in the region. Soil factors explain a high fraction (72%) of variation in predicted yields, with the predominant factor being soil nitrogen levels. Overall, this study illustrates the power of combining Sentinel-1 and Sentinel-2 imagery, the GEE platform, and advanced classification and yield mapping algorithms to advance understanding of smallholder agricultural systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
从容芮应助科研通管家采纳,获得30
29秒前
从容芮应助科研通管家采纳,获得30
29秒前
Jasper应助愤怒的梦曼采纳,获得10
40秒前
caca完成签到,获得积分0
1分钟前
1分钟前
平常安发布了新的文献求助10
1分钟前
1分钟前
aaa发布了新的文献求助10
1分钟前
aaa完成签到,获得积分20
2分钟前
波恩奥本海默绝热近似完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
楠lalala发布了新的文献求助10
3分钟前
李健应助迷路竹采纳,获得10
3分钟前
坤坤完成签到,获得积分10
3分钟前
3分钟前
xcgh应助ylsk采纳,获得10
3分钟前
脑洞疼应助楠lalala采纳,获得10
3分钟前
冰雪痕发布了新的文献求助10
3分钟前
snowwww发布了新的文献求助20
3分钟前
3分钟前
平常安发布了新的文献求助10
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
万能图书馆应助冰雪痕采纳,获得10
4分钟前
5分钟前
冰雪痕发布了新的文献求助10
5分钟前
小二郎应助慢走不宋女士采纳,获得10
5分钟前
酷波er应助Elysa采纳,获得10
5分钟前
5分钟前
冷静的梦芝完成签到 ,获得积分10
6分钟前
99668完成签到,获得积分10
6分钟前
共享精神应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210497
求助须知:如何正确求助?哪些是违规求助? 4387298
关于积分的说明 13662653
捐赠科研通 4247146
什么是DOI,文献DOI怎么找? 2330125
邀请新用户注册赠送积分活动 1327877
关于科研通互助平台的介绍 1280484