广义最小残差法
算法
数学
残余物
线性系统
基质(化学分析)
应用数学
系数矩阵
预处理程序
线性方程组
特征向量
数学优化
计算机科学
线性方程
数学分析
作者
Yousef Saad,Martin H. Schultz
出处
期刊:SIAM journal on scientific and statistical computing
[Society for Industrial and Applied Mathematics]
日期:1986-07-01
卷期号:7 (3): 856-869
被引量:9674
摘要
We present an iterative method for solving linear systems, which has the property of minimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an $l_2 $-orthogonal basis of Krylov subspaces. It can be considered as a generalization of Paige and Saunders’ MINRES algorithm and is theoretically equivalent to the Generalized Conjugate Residual (GCR) method and to ORTHODIR. The new algorithm presents several advantages over GCR and ORTHODIR.
科研通智能强力驱动
Strongly Powered by AbleSci AI