泊松-玻尔兹曼方程
电渗
半径
泊松方程
化学
双层(生物学)
机械
电解质
静电学
毛细管作用
经典力学
图层(电子)
分子物理学
电位
流量(数学)
物理
热力学
电泳
色谱法
电压
离子
量子力学
电极
物理化学
有机化学
计算机科学
计算机安全
作者
Dimiter N. Petsev,Gabriel P. López
标识
DOI:10.1016/j.jcis.2005.07.037
摘要
The electrostatic potential in a capillary filled with electrolyte is derived by solving the nonlinear Poisson-Boltzmann equation using the method of matched asymptotic expansions. This approach allows obtaining an analytical result for arbitrary high wall potential if the double layer thickness is smaller than the capillary radius. The derived expression for the electrostatic potential is compared to numerical solutions of the Poisson-Boltzmann equation and it is shown that the agreement is excellent for capillaries with radii greater or equal to four times the electrical double layer thickness. The knowledge of the electrostatic potential distribution inside the capillary enables the derivation of the electroosmotic velocity flow profile in an analytical form. The obtained results are applicable to capillaries with radii ranging from nanometers to micrometers depending on the ionic strength of the solution.
科研通智能强力驱动
Strongly Powered by AbleSci AI