泰文定理
鉴定(生物学)
电池(电)
在线模型
电压
荷电状态
算法
计算机科学
国家(计算机科学)
递归最小平方滤波器
系统标识
工程类
控制理论(社会学)
等效电路
自适应滤波器
数据建模
人工智能
功率(物理)
电气工程
数学
统计
物理
生物
量子力学
控制(管理)
植物
数据库
作者
Rui Xiong,Hongwen He,Kai Zhao
标识
DOI:10.1080/15435075.2014.891512
摘要
To improve the estimation accuracy of battery's inner state for battery management system, an online parameters identification algorithm for Thevenin battery model is researched. The Thevenin model and parameters identification algorithm based on recursive least square adaptive filter algorithm was built with the Simulink/xPC Target. The results of hardware-in-loop experiment, which uses Federal Urban Driving Schedule test to verify the parameters identification approach, show the proposed approach can accurately identify the model parameters within 1% maximum terminal voltage estimation error, and the State of Charge error which calculated by the open circuit voltage estimates can be efficiently reduced to 4%.
科研通智能强力驱动
Strongly Powered by AbleSci AI