色胺
血清素
生物
色氨酸羟化酶
细胞色素P450
生物化学
格里斯麦格纳波特
单加氧酶
细胞生物学
基因
水稻
酶
5-羟色胺能
受体
作者
Tadashi Fujiwara,Sylvie Maisonneuve,Masayuki Isshiki,Masaharu Mizutani,Letian Chen,Hann Ling Wong,Tsutomu Kawasaki,Ko Shimamoto
标识
DOI:10.1074/jbc.m109.091371
摘要
Serotonin is a well known neurotransmitter in mammals and plays an important role in various mental functions in humans. In plants, the serotonin biosynthesis pathway and its function are not well understood. The rice sekiguchi lesion (sl) mutants accumulate tryptamine, a candidate substrate for serotonin biosynthesis. We isolated the SL gene by map-based cloning and found that it encodes CYP71P1 in a cytochrome P450 monooxygenase family. A recombinant SL protein exhibited tryptamine 5-hydroxylase enzyme activity and catalyzed the conversion of tryptamine to serotonin. This pathway is novel and has not been reported in mammals. Expression of SL was induced by the N-acetylchitooligosaccharide (chitin) elicitor and by infection with Magnaporthe grisea, a causal agent for rice blast disease. Exogenously applied serotonin induced defense gene expression and cell death in rice suspension cultures and increased resistance to rice blast infection in plants. We also found that serotonin-induced defense gene expression is mediated by the RacGTPase pathway and by the G alpha subunit of the heterotrimeric G protein. These results suggest that serotonin plays an important role in rice innate immunity.
科研通智能强力驱动
Strongly Powered by AbleSci AI