DNA Codeword Design: Theory and Applications

DNA运算 计算机科学 嵌入 理论计算机科学 代码字 欧几里德几何 四面体 算法 数学 几何学 人工智能 计算 解码方法
作者
Max Garzón
出处
期刊:Parallel Processing Letters [World Scientific]
卷期号:24 (02): 1440001-1440001 被引量:10
标识
DOI:10.1142/s0129626414400015
摘要

This is a survey of the origin, current progress and applications of a major roadblock to the development of analytic models for DNA computing (a massively parallel programming methodology) and DNA self-assembly (a nanofabrication methodology), namely the so-called CODEWORD DESIGN problem. The problem calls for finding large sets of single DNA strands that do not crosshybridize to themselves or to their complements and has been recognized as an important problem in DNA computing, self-assembly, DNA memories and phylogenetic analyses because of their error correction and prevention properties. Major recent advances include the development of experimental techniques to search for such codes, as well as a theoretical framework to analyze this problem, despite the fact that it has been proven to be NP-complete using any single concrete metric space to model the Gibbs energy. In this framework, codeword design is reduced to finding large sets of strands maximally separated in DNA spaces and, therefore, the key to finding such sets would lie in knowledge of the geometry of these spaces. A new general technique has been recently found to embed them in Euclidean spaces in a hybridization-affinity-preserving manner, i.e., in such a way that oligos with high/low hybridization affinity are mapped to neighboring/remote points in a geometric lattice, respectively. This isometric embedding materializes long-held metaphors about codeword design in terms of sphere packing and error-correcting codes and leads to designs that are in some cases known to be provably nearly optimal for some oligo sizes. It also leads to upper and lower bounds on estimates of the size of optimal codes of size up to 32–mers, as well as to infinite families of solutions to CODEWORD DESIGN, based on estimates of the kissing (or contact) number for sphere packings in Euclidean spaces. Conversely, this reduction suggests interesting new algorithms to find dense sphere packing solutions in high dimensional spheres using results for CODEWORD DESIGN previously obtained by experimental or theoretical molecular means, as well as a proof that finding these bounds exactly is NP-complete in general. Finally, some research problems and applications arising from these results are described that might be of interest for further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tracy完成签到,获得积分10
1秒前
1秒前
Lucas应助稻草人采纳,获得10
1秒前
Jasper应助活力雁枫采纳,获得10
2秒前
liaoliaoliao完成签到,获得积分10
3秒前
852应助别喝他的酒采纳,获得10
3秒前
3秒前
3秒前
guoleileity完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
sunny完成签到,获得积分10
6秒前
yuaner发布了新的文献求助10
7秒前
开心绿柳完成签到,获得积分10
7秒前
山河已秋发布了新的文献求助10
8秒前
WENc发布了新的文献求助10
8秒前
8秒前
谢芸完成签到,获得积分10
9秒前
Heunwon完成签到,获得积分10
9秒前
10秒前
背后的傥发布了新的文献求助10
10秒前
guoleileity发布了新的文献求助10
11秒前
横冲直撞发布了新的文献求助10
12秒前
研时友发布了新的文献求助10
12秒前
Kyogoku完成签到,获得积分10
12秒前
方赫然应助Reut_Hyu采纳,获得10
12秒前
pluto应助HEIHEI采纳,获得10
13秒前
15秒前
CipherSage应助卓天宇采纳,获得10
16秒前
16秒前
HJM应助搞怪的紫雪采纳,获得10
17秒前
活力雁枫发布了新的文献求助10
18秒前
21秒前
ding应助追寻妖妖采纳,获得10
21秒前
看文献也是技术活完成签到,获得积分10
22秒前
熊大对熊二说熊要有个熊样完成签到,获得积分10
22秒前
借一颗糖发布了新的文献求助30
22秒前
yyds发布了新的文献求助10
23秒前
余念安完成签到 ,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289014
求助须知:如何正确求助?哪些是违规求助? 2926184
关于积分的说明 8426015
捐赠科研通 2597274
什么是DOI,文献DOI怎么找? 1417165
科研通“疑难数据库(出版商)”最低求助积分说明 659597
邀请新用户注册赠送积分活动 642019