氮氧化物
催化作用
选择性催化还原
X射线光电子能谱
选择性
无机化学
热脱附光谱法
解吸
吸附
红外光谱学
核化学
材料科学
大气温度范围
化学
化学工程
物理化学
有机化学
工程类
燃烧
物理
气象学
作者
Dong Wook Kwon,Ki Bok Nam,Sung Chang Hong
标识
DOI:10.1016/j.apcatb.2014.11.004
摘要
Abstract We investigated the influence of Ce on the catalytic activity of V/Sb/Ce/Ti and its deactivation due to SO2. We studied the properties of the catalyst using physio-chemical techniques, including transmission infrared spectroscopy (IR), NH3 and SO2 temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), H2 temperature programmed reduction (H2-TPR), and thermal gravimetric analysis (TGA). The catalysts V/Sb/Ti and V/Sb/Ce/Ti showed an excellent NOx conversion and N2 selectivity in the temperature range of 200–400 °C. Increasing Bronsted acid sites and the NH3 adsorption positively affected the efficiency of the catalyst. The Ce4+ ratio increased upon the addition of Sb and V to Ce/Ti. The catalyst V/Sb/Ce/Ti was prepared by controlling the Ce4+ ratio and exhibited an excellent activity upon increasing the Ce4+ ratio. The V/Sb/Ti (or V/W/Ti) showed one route in which NH4HSO4 formed by converting SO2 into SO3 upon the injection of SO2 in the selective catalytic reduction (SCR) reaction. In addition to this route, the reaction in the presence of V/Sb/Ce/Ti can proceed via a second route, in which Ce2(SO4)3 is formed in the reaction of Ce with SO2 and O2. Thus, V/Sb/Ce/Ti can inhibit the formation of NH4HSO4 due to the consumption of SO2 in the formation of Ce2(SO4)3. Therefore, V/Sb/Ce/Ti was found to have excellent SO2 resistance compared to V/Sb/Ti (or V/W/Ti).
科研通智能强力驱动
Strongly Powered by AbleSci AI