希尔伯特空间
核希尔伯特再生空间
可分离空间
操纵希尔伯特空间
基础(线性代数)
等价(形式语言)
希尔伯特流形
纯数学
物理
核(代数)
投影希尔伯特空间
域代数上的
数学分析
数学
几何学
作者
Saqib Ali,Jean-Pierre Antoine,Jean‐Pierre Gazeau
标识
DOI:10.1006/aphy.1993.1016
摘要
The standard theory of frames in Hilbert spaces, using discrete bases, is generalized to one where the basis vectors may be labelled using discrete, continuous, or a mixture of the two types of indices. A comprehensive analysis of such frames is presented and various notions of equivalence among frames are introduced. A consideration of the relationschip between reproducing kernel Hilbert spaces and frames leads to an exhaustive construction for all possible frames in a separable Hilbert space. Generalizations of the theory are indicated and illustrated by an example drawn from the afline group.
科研通智能强力驱动
Strongly Powered by AbleSci AI