Recognizing action units for facial expression analysis

人工智能 模式识别(心理学) 面部表情识别 面子(社会学概念) 动作识别 动作(物理) 特征(语言学) 判别式 计算机视觉
作者
Ying-li Tian,Takeo Kanade,Jeffrey F. Cohn
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:23 (2): 97-115 被引量:1512
标识
DOI:10.1109/34.908962
摘要

Most automatic expression analysis systems attempt to recognize a small set of prototypic expressions, such as happiness, anger, surprise, and fear. Such prototypic expressions, however, occur rather infrequently. Human emotions and intentions are more often communicated by changes in one or a few discrete facial features. In this paper, we develop an Automatic Face Analysis (AFA) system to analyze facial expressions based on both permanent facial features (brows, eyes, mouth) and transient facial features (deepening of facial furrows) in a nearly frontal-view face image sequence. The AFA system recognizes fine-grained changes in facial expression into action units (AUs) of the Facial Action Coding System (FACS), instead of a few prototypic expressions. Multistate face and facial component models are proposed for tracking and modeling the various facial features, including lips, eyes, brows, cheeks, and furrows. During tracking, detailed parametric descriptions of the facial features are extracted. With these parameters as the inputs, a group of action units (neutral expression, six upper face AUs and 10 lower face AUs) are recognized whether they occur alone or in combinations. The system has achieved average recognition rates of 96.4 percent (95.4 percent if neutral expressions are excluded) for upper face AUs and 96.7 percent (95.6 percent with neutral expressions excluded) for lower face AUs. The generalizability of the system has been tested by using independent image databases collected and FACS-coded for ground-truth by different research teams.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
2秒前
HITvagary完成签到,获得积分0
3秒前
不敢装睡完成签到,获得积分10
3秒前
4秒前
聂落雁完成签到,获得积分10
4秒前
芋泥丸丸发布了新的文献求助10
4秒前
xuejie驳回了慕青应助
4秒前
ZSC发布了新的文献求助10
5秒前
5秒前
跳跃发布了新的文献求助10
6秒前
追寻梦之发布了新的文献求助10
6秒前
6秒前
7秒前
小庄完成签到 ,获得积分10
7秒前
大胆的弼完成签到,获得积分10
8秒前
8秒前
yiyi发布了新的文献求助10
8秒前
ruru发布了新的文献求助10
8秒前
9秒前
可爱的函函应助辉腾采纳,获得10
9秒前
9秒前
王蕊发布了新的文献求助10
10秒前
10秒前
lxgz发布了新的文献求助10
10秒前
10秒前
Ava应助dd采纳,获得10
10秒前
bamboo应助细心怀亦采纳,获得20
10秒前
11秒前
11秒前
星辰大海应助TaoTaooooII采纳,获得10
11秒前
su123发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
12秒前
zhonglv7应助lin采纳,获得10
12秒前
elang发布了新的文献求助10
12秒前
12秒前
123发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524