Recognizing action units for facial expression analysis

人工智能 模式识别(心理学) 面部表情识别 面子(社会学概念) 动作识别 动作(物理) 特征(语言学) 判别式 计算机视觉
作者
Ying-li Tian,Takeo Kanade,Jeffrey F. Cohn
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:23 (2): 97-115 被引量:1512
标识
DOI:10.1109/34.908962
摘要

Most automatic expression analysis systems attempt to recognize a small set of prototypic expressions, such as happiness, anger, surprise, and fear. Such prototypic expressions, however, occur rather infrequently. Human emotions and intentions are more often communicated by changes in one or a few discrete facial features. In this paper, we develop an Automatic Face Analysis (AFA) system to analyze facial expressions based on both permanent facial features (brows, eyes, mouth) and transient facial features (deepening of facial furrows) in a nearly frontal-view face image sequence. The AFA system recognizes fine-grained changes in facial expression into action units (AUs) of the Facial Action Coding System (FACS), instead of a few prototypic expressions. Multistate face and facial component models are proposed for tracking and modeling the various facial features, including lips, eyes, brows, cheeks, and furrows. During tracking, detailed parametric descriptions of the facial features are extracted. With these parameters as the inputs, a group of action units (neutral expression, six upper face AUs and 10 lower face AUs) are recognized whether they occur alone or in combinations. The system has achieved average recognition rates of 96.4 percent (95.4 percent if neutral expressions are excluded) for upper face AUs and 96.7 percent (95.6 percent with neutral expressions excluded) for lower face AUs. The generalizability of the system has been tested by using independent image databases collected and FACS-coded for ground-truth by different research teams.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助hlt采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
前前前世完成签到,获得积分10
1秒前
2秒前
弼马温关注了科研通微信公众号
2秒前
可爱迪发布了新的文献求助10
2秒前
健壮的化蛹应助顺心的骁采纳,获得10
3秒前
小满发布了新的文献求助10
3秒前
ss完成签到 ,获得积分10
3秒前
tt完成签到,获得积分10
4秒前
4秒前
4秒前
fish1998完成签到,获得积分10
4秒前
顾矜应助优雅尔芙采纳,获得10
4秒前
Mr祥发布了新的文献求助10
5秒前
爬不起来发布了新的文献求助10
5秒前
5秒前
6秒前
CCCC完成签到,获得积分20
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
meng发布了新的文献求助10
8秒前
英姑应助hlt采纳,获得10
8秒前
科研牛马人完成签到,获得积分10
8秒前
fish1998发布了新的文献求助10
9秒前
9秒前
Sunny发布了新的文献求助10
9秒前
9秒前
11发布了新的文献求助10
9秒前
lienafeihu完成签到,获得积分10
10秒前
小二郎应助曾经的芷波采纳,获得10
10秒前
鲨鱼辣椒发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776435
求助须知:如何正确求助?哪些是违规求助? 5629479
关于积分的说明 15442901
捐赠科研通 4908608
什么是DOI,文献DOI怎么找? 2641332
邀请新用户注册赠送积分活动 1589287
关于科研通互助平台的介绍 1543910