清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Recognizing action units for facial expression analysis

人工智能 模式识别(心理学) 面部表情识别 面子(社会学概念) 动作识别 动作(物理) 特征(语言学) 判别式 计算机视觉
作者
Ying-li Tian,Takeo Kanade,Jeffrey F. Cohn
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:23 (2): 97-115 被引量:1512
标识
DOI:10.1109/34.908962
摘要

Most automatic expression analysis systems attempt to recognize a small set of prototypic expressions, such as happiness, anger, surprise, and fear. Such prototypic expressions, however, occur rather infrequently. Human emotions and intentions are more often communicated by changes in one or a few discrete facial features. In this paper, we develop an Automatic Face Analysis (AFA) system to analyze facial expressions based on both permanent facial features (brows, eyes, mouth) and transient facial features (deepening of facial furrows) in a nearly frontal-view face image sequence. The AFA system recognizes fine-grained changes in facial expression into action units (AUs) of the Facial Action Coding System (FACS), instead of a few prototypic expressions. Multistate face and facial component models are proposed for tracking and modeling the various facial features, including lips, eyes, brows, cheeks, and furrows. During tracking, detailed parametric descriptions of the facial features are extracted. With these parameters as the inputs, a group of action units (neutral expression, six upper face AUs and 10 lower face AUs) are recognized whether they occur alone or in combinations. The system has achieved average recognition rates of 96.4 percent (95.4 percent if neutral expressions are excluded) for upper face AUs and 96.7 percent (95.6 percent with neutral expressions excluded) for lower face AUs. The generalizability of the system has been tested by using independent image databases collected and FACS-coded for ground-truth by different research teams.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zcl完成签到 ,获得积分10
6秒前
苏梗完成签到 ,获得积分10
45秒前
53秒前
57秒前
小蘑菇应助aayy采纳,获得30
1分钟前
jie完成签到 ,获得积分10
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
轨迹应助ceeray23采纳,获得20
1分钟前
2分钟前
乌迪尔应助ceeray23采纳,获得200
2分钟前
2分钟前
3分钟前
3分钟前
自然亦凝完成签到,获得积分10
3分钟前
xiaohu完成签到 ,获得积分10
4分钟前
5分钟前
烟花应助科研通管家采纳,获得10
5分钟前
MchemG应助科研通管家采纳,获得10
5分钟前
闲人颦儿完成签到,获得积分0
5分钟前
感动的小甜瓜给感动的小甜瓜的求助进行了留言
6分钟前
6分钟前
方白秋完成签到,获得积分0
6分钟前
Hello应助00采纳,获得10
6分钟前
狂野的含烟完成签到 ,获得积分10
7分钟前
MchemG应助科研通管家采纳,获得10
7分钟前
LeoBigman完成签到 ,获得积分10
8分钟前
8分钟前
Eileen完成签到 ,获得积分0
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
00发布了新的文献求助10
8分钟前
freebird完成签到,获得积分10
8分钟前
CodeCraft应助iman采纳,获得10
8分钟前
量子星尘发布了新的文献求助10
9分钟前
科研通AI6应助科研通管家采纳,获得10
9分钟前
MchemG应助科研通管家采纳,获得30
9分钟前
tutu完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681806
求助须知:如何正确求助?哪些是违规求助? 5013763
关于积分的说明 15176137
捐赠科研通 4841302
什么是DOI,文献DOI怎么找? 2595086
邀请新用户注册赠送积分活动 1548130
关于科研通互助平台的介绍 1506143