Recognizing action units for facial expression analysis

人工智能 模式识别(心理学) 面部表情识别 面子(社会学概念) 动作识别 动作(物理) 特征(语言学) 判别式 计算机视觉
作者
Ying-li Tian,Takeo Kanade,Jeffrey F. Cohn
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:23 (2): 97-115 被引量:1512
标识
DOI:10.1109/34.908962
摘要

Most automatic expression analysis systems attempt to recognize a small set of prototypic expressions, such as happiness, anger, surprise, and fear. Such prototypic expressions, however, occur rather infrequently. Human emotions and intentions are more often communicated by changes in one or a few discrete facial features. In this paper, we develop an Automatic Face Analysis (AFA) system to analyze facial expressions based on both permanent facial features (brows, eyes, mouth) and transient facial features (deepening of facial furrows) in a nearly frontal-view face image sequence. The AFA system recognizes fine-grained changes in facial expression into action units (AUs) of the Facial Action Coding System (FACS), instead of a few prototypic expressions. Multistate face and facial component models are proposed for tracking and modeling the various facial features, including lips, eyes, brows, cheeks, and furrows. During tracking, detailed parametric descriptions of the facial features are extracted. With these parameters as the inputs, a group of action units (neutral expression, six upper face AUs and 10 lower face AUs) are recognized whether they occur alone or in combinations. The system has achieved average recognition rates of 96.4 percent (95.4 percent if neutral expressions are excluded) for upper face AUs and 96.7 percent (95.6 percent with neutral expressions excluded) for lower face AUs. The generalizability of the system has been tested by using independent image databases collected and FACS-coded for ground-truth by different research teams.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助cmulong采纳,获得10
2秒前
李杰杰发布了新的文献求助10
2秒前
赘婿应助Starshine采纳,获得10
3秒前
JamesPei应助bzlish采纳,获得10
4秒前
Orange应助平淡夏云采纳,获得10
4秒前
slycmd完成签到,获得积分10
4秒前
hmhu发布了新的文献求助10
5秒前
超级如风完成签到 ,获得积分10
6秒前
6秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
浮游应助标致的山水采纳,获得10
10秒前
王之争霸完成签到,获得积分10
10秒前
陈晨发布了新的文献求助10
10秒前
11秒前
little black完成签到,获得积分10
11秒前
鳗鱼忆山完成签到 ,获得积分10
12秒前
little black发布了新的文献求助30
14秒前
Dudu发布了新的文献求助10
14秒前
Sophialin发布了新的文献求助10
15秒前
莫我肯顾完成签到,获得积分10
15秒前
15秒前
共享精神应助hhh123采纳,获得10
16秒前
ding应助学习采纳,获得10
17秒前
陈晨完成签到,获得积分20
17秒前
17秒前
ji关闭了ji文献求助
18秒前
cc应助疯狂原始人采纳,获得10
20秒前
小蘑菇应助aliu采纳,获得10
20秒前
所所应助上山的吗喽采纳,获得10
21秒前
phobeeee完成签到 ,获得积分10
21秒前
imp发布了新的文献求助10
21秒前
bzlish发布了新的文献求助10
22秒前
Luna_aaa应助高源伯采纳,获得10
23秒前
小高发布了新的文献求助10
23秒前
23秒前
Flex完成签到,获得积分10
24秒前
25秒前
25秒前
学习完成签到,获得积分20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642756
求助须知:如何正确求助?哪些是违规求助? 4759612
关于积分的说明 15018685
捐赠科研通 4801257
什么是DOI,文献DOI怎么找? 2566565
邀请新用户注册赠送积分活动 1524558
关于科研通互助平台的介绍 1484100