亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recognizing action units for facial expression analysis

人工智能 模式识别(心理学) 面部表情识别 面子(社会学概念) 动作识别 动作(物理) 特征(语言学) 判别式 计算机视觉
作者
Ying-li Tian,Takeo Kanade,Jeffrey F. Cohn
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:23 (2): 97-115 被引量:1512
标识
DOI:10.1109/34.908962
摘要

Most automatic expression analysis systems attempt to recognize a small set of prototypic expressions, such as happiness, anger, surprise, and fear. Such prototypic expressions, however, occur rather infrequently. Human emotions and intentions are more often communicated by changes in one or a few discrete facial features. In this paper, we develop an Automatic Face Analysis (AFA) system to analyze facial expressions based on both permanent facial features (brows, eyes, mouth) and transient facial features (deepening of facial furrows) in a nearly frontal-view face image sequence. The AFA system recognizes fine-grained changes in facial expression into action units (AUs) of the Facial Action Coding System (FACS), instead of a few prototypic expressions. Multistate face and facial component models are proposed for tracking and modeling the various facial features, including lips, eyes, brows, cheeks, and furrows. During tracking, detailed parametric descriptions of the facial features are extracted. With these parameters as the inputs, a group of action units (neutral expression, six upper face AUs and 10 lower face AUs) are recognized whether they occur alone or in combinations. The system has achieved average recognition rates of 96.4 percent (95.4 percent if neutral expressions are excluded) for upper face AUs and 96.7 percent (95.6 percent with neutral expressions excluded) for lower face AUs. The generalizability of the system has been tested by using independent image databases collected and FACS-coded for ground-truth by different research teams.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助欣怡采纳,获得10
2秒前
Sunny完成签到,获得积分10
2秒前
2秒前
香蕉觅云应助石榴汁的书采纳,获得10
4秒前
无忧发布了新的文献求助10
6秒前
8秒前
muuuu发布了新的文献求助10
12秒前
Rita发布了新的文献求助10
13秒前
充电宝应助lululiya采纳,获得80
13秒前
甜甜雨莲完成签到 ,获得积分10
18秒前
19秒前
20秒前
sys549发布了新的文献求助10
23秒前
Guts发布了新的文献求助10
25秒前
满意人英完成签到,获得积分10
39秒前
hai完成签到,获得积分10
41秒前
sys549完成签到,获得积分10
42秒前
44秒前
44秒前
46秒前
子訡完成签到 ,获得积分10
48秒前
青阳发布了新的文献求助10
50秒前
石榴汁的书完成签到,获得积分10
50秒前
Xx完成签到 ,获得积分10
51秒前
53秒前
56秒前
CATH完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
信封里的太阳完成签到 ,获得积分10
1分钟前
青阳完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Guts发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
JamesPei应助香蕉念波采纳,获得10
1分钟前
清爽代芹完成签到 ,获得积分10
1分钟前
搜集达人应助sh采纳,获得10
1分钟前
万能图书馆应助Guts采纳,获得10
1分钟前
kento完成签到,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754672
求助须知:如何正确求助?哪些是违规求助? 5488707
关于积分的说明 15380490
捐赠科研通 4893182
什么是DOI,文献DOI怎么找? 2631791
邀请新用户注册赠送积分活动 1579727
关于科研通互助平台的介绍 1535475