Recognizing action units for facial expression analysis

人工智能 模式识别(心理学) 面部表情识别 面子(社会学概念) 动作识别 动作(物理) 特征(语言学) 判别式 计算机视觉
作者
Ying-li Tian,Takeo Kanade,Jeffrey F. Cohn
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:23 (2): 97-115 被引量:1512
标识
DOI:10.1109/34.908962
摘要

Most automatic expression analysis systems attempt to recognize a small set of prototypic expressions, such as happiness, anger, surprise, and fear. Such prototypic expressions, however, occur rather infrequently. Human emotions and intentions are more often communicated by changes in one or a few discrete facial features. In this paper, we develop an Automatic Face Analysis (AFA) system to analyze facial expressions based on both permanent facial features (brows, eyes, mouth) and transient facial features (deepening of facial furrows) in a nearly frontal-view face image sequence. The AFA system recognizes fine-grained changes in facial expression into action units (AUs) of the Facial Action Coding System (FACS), instead of a few prototypic expressions. Multistate face and facial component models are proposed for tracking and modeling the various facial features, including lips, eyes, brows, cheeks, and furrows. During tracking, detailed parametric descriptions of the facial features are extracted. With these parameters as the inputs, a group of action units (neutral expression, six upper face AUs and 10 lower face AUs) are recognized whether they occur alone or in combinations. The system has achieved average recognition rates of 96.4 percent (95.4 percent if neutral expressions are excluded) for upper face AUs and 96.7 percent (95.6 percent with neutral expressions excluded) for lower face AUs. The generalizability of the system has been tested by using independent image databases collected and FACS-coded for ground-truth by different research teams.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助伊尔采纳,获得10
刚刚
刚刚
HERE发布了新的文献求助10
刚刚
bkagyin应助学术laji采纳,获得10
刚刚
橙子完成签到,获得积分10
刚刚
Deathroid完成签到,获得积分10
刚刚
敏家发布了新的文献求助10
1秒前
Cenhuan发布了新的文献求助20
1秒前
朝闻道完成签到 ,获得积分10
1秒前
shuang完成签到,获得积分10
1秒前
之后再说咯完成签到,获得积分10
1秒前
2秒前
xgg关闭了xgg文献求助
2秒前
3秒前
3秒前
亚尔发布了新的文献求助10
3秒前
3秒前
3秒前
Verritis完成签到,获得积分10
4秒前
4秒前
可爱的函函应助孙伟健采纳,获得10
4秒前
直率千柳完成签到 ,获得积分20
4秒前
机智的板栗完成签到,获得积分20
4秒前
徐赛婷发布了新的文献求助10
5秒前
NexusExplorer应助wang采纳,获得10
5秒前
5秒前
白水发布了新的文献求助10
5秒前
Lin发布了新的文献求助10
5秒前
et完成签到,获得积分10
6秒前
6秒前
科研通AI6应助畅快醉冬采纳,获得10
6秒前
6秒前
周煜锦发布了新的文献求助10
7秒前
7秒前
7秒前
ZM发布了新的文献求助10
7秒前
7秒前
Ywffffff发布了新的文献求助10
7秒前
Cheney发布了新的文献求助10
8秒前
zzuzjx应助贰什柒采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565