Recognizing action units for facial expression analysis

人工智能 模式识别(心理学) 面部表情识别 面子(社会学概念) 动作识别 动作(物理) 特征(语言学) 判别式 计算机视觉
作者
Ying-li Tian,Takeo Kanade,Jeffrey F. Cohn
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:23 (2): 97-115 被引量:1512
标识
DOI:10.1109/34.908962
摘要

Most automatic expression analysis systems attempt to recognize a small set of prototypic expressions, such as happiness, anger, surprise, and fear. Such prototypic expressions, however, occur rather infrequently. Human emotions and intentions are more often communicated by changes in one or a few discrete facial features. In this paper, we develop an Automatic Face Analysis (AFA) system to analyze facial expressions based on both permanent facial features (brows, eyes, mouth) and transient facial features (deepening of facial furrows) in a nearly frontal-view face image sequence. The AFA system recognizes fine-grained changes in facial expression into action units (AUs) of the Facial Action Coding System (FACS), instead of a few prototypic expressions. Multistate face and facial component models are proposed for tracking and modeling the various facial features, including lips, eyes, brows, cheeks, and furrows. During tracking, detailed parametric descriptions of the facial features are extracted. With these parameters as the inputs, a group of action units (neutral expression, six upper face AUs and 10 lower face AUs) are recognized whether they occur alone or in combinations. The system has achieved average recognition rates of 96.4 percent (95.4 percent if neutral expressions are excluded) for upper face AUs and 96.7 percent (95.6 percent with neutral expressions excluded) for lower face AUs. The generalizability of the system has been tested by using independent image databases collected and FACS-coded for ground-truth by different research teams.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老K完成签到 ,获得积分10
刚刚
zzz发布了新的文献求助10
刚刚
wlmqljj完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
2秒前
小只完成签到,获得积分10
2秒前
跳跳发布了新的文献求助10
4秒前
不吃菠萝蜜完成签到 ,获得积分10
4秒前
4秒前
255发布了新的文献求助30
5秒前
LiLiuli应助Paralyzed采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
英吉利25发布了新的文献求助30
6秒前
6秒前
fu完成签到,获得积分20
6秒前
6秒前
楠楠DAYTOY完成签到,获得积分10
7秒前
张巨锋发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
潇洒荧荧发布了新的文献求助10
7秒前
李李李发布了新的文献求助10
7秒前
spc68应助HTY采纳,获得10
8秒前
8秒前
8秒前
WJ98发布了新的文献求助10
8秒前
321发布了新的文献求助50
8秒前
momo发布了新的文献求助10
9秒前
小马甲应助邵初蓝采纳,获得10
9秒前
caicai完成签到,获得积分10
9秒前
10秒前
syvshc应助人类不宜搞科研采纳,获得10
10秒前
10秒前
shirley完成签到,获得积分10
11秒前
YY再摆烂发布了新的文献求助10
11秒前
Hello应助自信彩虹采纳,获得10
11秒前
Zwj完成签到 ,获得积分10
12秒前
stresm完成签到,获得积分10
13秒前
李爱国应助倚楼听风雨采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277