过氧亚硝酸盐
活性氮物种
活性氧
化学
氧化应激
细胞内
一氧化氮
超氧化物歧化酶
生物分子
过氧化氢酶
生物化学
超氧化物
信号转导
小学(天文学)
生物物理学
氧化磷酸化
细胞生物学
酶
生物
有机化学
物理
天文
作者
Adelheid Weidinger,Andrey V. Kozlov
出处
期刊:Biomolecules
[MDPI AG]
日期:2015-04-15
卷期号:5 (2): 472-484
被引量:550
摘要
In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity.
科研通智能强力驱动
Strongly Powered by AbleSci AI