Landscape synergy in evolutionary multitasking

人类多任务处理 计算机科学 进化计算 人口 利用 进化算法 互补性(分子生物学) 分布式计算 人工智能 机器学习 理论计算机科学 心理学 社会学 人口学 生物 认知心理学 遗传学 计算机安全
作者
Abhishek Gupta,Yew-Soon Ong,Bingshui Da,Liang Feng,Stephanus Daniel Handoko
标识
DOI:10.1109/cec.2016.7744178
摘要

Over the years, the algorithms of evolutionary computation have emerged as popular tools for tackling complex real-world optimization problems. A common feature among these algorithms is that they focus on efficiently solving a single problem at a time. Despite the availability of a population of individuals navigating the search space, and the implicit parallelism of their collective behavior, seldom has an effort been made to multitask. Considering the power of implicit parallelism, we are drawn to the idea that population-based search strategies provide an idyllic setting for leveraging the underlying synergies between objective function landscapes of seemingly distinct optimization tasks, particularly when they are solved together with a single population of evolving individuals. As has been recently demonstrated, allowing the principles of evolution to autonomously exploit the available synergies can often lead to accelerated convergence for otherwise complex optimization tasks. With the aim of providing deeper insight into the processes of evolutionary multitasking, we present in this paper a conceptualization of what, in our opinion, is one possible interpretation of the complementarity between optimization tasks. In particular, we propose a synergy metric that captures the correlation between objective function landscapes of distinct tasks placed in synthetic multitasking environments. In the long run, it is contended that the metric will serve as an important guide toward better understanding of evolutionary multitasking, thereby facilitating the design of improved multitasking engines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wxaaaa完成签到,获得积分10
刚刚
李爱国应助dd采纳,获得10
1秒前
2秒前
Jasper应助感性的凉面采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
情怀应助顺顺采纳,获得10
5秒前
garyaa发布了新的文献求助10
5秒前
5秒前
NexusExplorer应助奔奔采纳,获得10
5秒前
Orange应助Clean采纳,获得10
6秒前
Lucas应助ww采纳,获得10
6秒前
7秒前
ttttttuu完成签到,获得积分10
7秒前
8秒前
刘涵完成签到 ,获得积分10
8秒前
小马甲应助zhui采纳,获得10
8秒前
10完成签到,获得积分10
8秒前
8秒前
8秒前
Rainielove0215完成签到,获得积分0
9秒前
zz完成签到,获得积分10
10秒前
10秒前
kyle完成签到,获得积分10
12秒前
感性的凉面完成签到,获得积分20
12秒前
12秒前
请叫我风吹麦浪应助末岛采纳,获得10
13秒前
Aprial发布了新的文献求助30
13秒前
dd发布了新的文献求助10
13秒前
传奇3应助科研小菜鸟采纳,获得10
13秒前
在水一方应助惠惠采纳,获得10
14秒前
15秒前
冷艳贵公子王少完成签到 ,获得积分10
15秒前
KatzeBaliey完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794