Landscape synergy in evolutionary multitasking

人类多任务处理 计算机科学 进化计算 人口 利用 进化算法 互补性(分子生物学) 分布式计算 人工智能 机器学习 理论计算机科学 心理学 社会学 人口学 生物 认知心理学 遗传学 计算机安全
作者
Abhishek Gupta,Yew-Soon Ong,Bingshui Da,Liang Feng,Stephanus Daniel Handoko
标识
DOI:10.1109/cec.2016.7744178
摘要

Over the years, the algorithms of evolutionary computation have emerged as popular tools for tackling complex real-world optimization problems. A common feature among these algorithms is that they focus on efficiently solving a single problem at a time. Despite the availability of a population of individuals navigating the search space, and the implicit parallelism of their collective behavior, seldom has an effort been made to multitask. Considering the power of implicit parallelism, we are drawn to the idea that population-based search strategies provide an idyllic setting for leveraging the underlying synergies between objective function landscapes of seemingly distinct optimization tasks, particularly when they are solved together with a single population of evolving individuals. As has been recently demonstrated, allowing the principles of evolution to autonomously exploit the available synergies can often lead to accelerated convergence for otherwise complex optimization tasks. With the aim of providing deeper insight into the processes of evolutionary multitasking, we present in this paper a conceptualization of what, in our opinion, is one possible interpretation of the complementarity between optimization tasks. In particular, we propose a synergy metric that captures the correlation between objective function landscapes of distinct tasks placed in synthetic multitasking environments. In the long run, it is contended that the metric will serve as an important guide toward better understanding of evolutionary multitasking, thereby facilitating the design of improved multitasking engines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WeiSONG完成签到,获得积分10
刚刚
刚刚
了一发布了新的文献求助30
1秒前
英姑应助Skuld采纳,获得10
4秒前
传奇3应助墙头的草采纳,获得10
5秒前
5秒前
Will完成签到,获得积分10
6秒前
6秒前
猪猪hero应助现代的寄风采纳,获得10
6秒前
yps完成签到 ,获得积分10
7秒前
LSH970829完成签到,获得积分10
7秒前
要减肥白昼完成签到,获得积分10
8秒前
9秒前
捏捏捏发布了新的文献求助10
11秒前
12秒前
月亮发布了新的文献求助10
12秒前
科研通AI2S应助wiwi采纳,获得10
13秒前
搞学术的发布了新的文献求助10
13秒前
付创发布了新的文献求助10
14秒前
是小袁呀完成签到 ,获得积分10
16秒前
dengyan完成签到,获得积分10
16秒前
大模型应助Ryan123采纳,获得10
17秒前
liz完成签到,获得积分10
17秒前
领导范儿应助赵一丁采纳,获得10
17秒前
MMMMMM完成签到 ,获得积分10
18秒前
Jupiter完成签到,获得积分10
19秒前
22秒前
22秒前
22秒前
在水一方应助搞学术的采纳,获得10
22秒前
22秒前
全追命发布了新的文献求助10
23秒前
bkagyin应助乐乐采纳,获得30
23秒前
24秒前
彭于彦祖应助烈阳采纳,获得30
26秒前
夏夏发布了新的文献求助10
27秒前
JaneChen发布了新的文献求助10
27秒前
28秒前
共享精神应助仓鼠球采纳,获得10
32秒前
量子星尘发布了新的文献求助10
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979584
求助须知:如何正确求助?哪些是违规求助? 3523532
关于积分的说明 11217894
捐赠科研通 3261031
什么是DOI,文献DOI怎么找? 1800369
邀请新用户注册赠送积分活动 879064
科研通“疑难数据库(出版商)”最低求助积分说明 807152