自愈水凝胶
细胞包封
微尺度化学
间质细胞
材料科学
体内
再生医学
组织工程
间充质干细胞
动力学
纳米技术
细胞
生物医学工程
生物物理学
化学
细胞生物学
高分子化学
生物
数学教育
病理
生物技术
物理
医学
量子力学
生物化学
数学
作者
Angelo S. Mao,Jae‐Won Shin,Stefanie Utech,Huanan Wang,Oktay Uzun,Weiwei Li,Madeline H. Cooper,Yuebi Hu,Liyuan Zhang,David A. Weitz,David Mooney
出处
期刊:Nature Materials
[Springer Nature]
日期:2016-10-31
卷期号:16 (2): 236-243
被引量:312
摘要
Single cells encapsulated in a layer of alginate and injected intravenously delay clearance kinetics and sustain donor-derived soluble factors in vivo. Existing techniques to encapsulate cells into microscale hydrogels generally yield high polymer-to-cell ratios and lack control over the hydrogel’s mechanical properties1. Here, we report a microfluidic-based method for encapsulating single cells in an approximately six-micrometre layer of alginate that increases the proportion of cell-containing microgels by a factor of ten, with encapsulation efficiencies over 90%. We show that in vitro cell viability was maintained over a three-day period, that the microgels are mechanically tractable, and that, for microscale cell assemblages of encapsulated marrow stromal cells cultured in microwells, osteogenic differentiation of encapsulated cells depends on gel stiffness and cell density. We also show that intravenous injection of singly encapsulated marrow stromal cells into mice delays clearance kinetics and sustains donor-derived soluble factors in vivo. The encapsulation of single cells in tunable hydrogels should find use in a variety of tissue engineering and regenerative medicine applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI