Customer churn prediction in the telecommunication sector using a rough set approach

水准点(测量) 计算机科学 粗集 集合(抽象数据类型) 领域(数学) 订单(交换) 数据挖掘 实证研究 机器学习 决策规则 人工智能 业务 地理 纯数学 程序设计语言 哲学 认识论 数学 大地测量学 财务
作者
Adnan Amin,Sajid Anwar,Awais Adnan,Muhammad Nawaz,Khalid S. Al-awfi,Amir Hussain,Kaizhu Huang
出处
期刊:Neurocomputing [Elsevier]
卷期号:237: 242-254 被引量:154
标识
DOI:10.1016/j.neucom.2016.12.009
摘要

Customer churn is a critical and challenging problem affecting business and industry, in particular, the rapidly growing, highly competitive telecommunication sector. It is of substantial interest to both academic researchers and industrial practitioners, interested in forecasting the behavior of customers in order to differentiate the churn from non-churn customers. The primary motivation is the dire need of businesses to retain existing customers, coupled with the high cost associated with acquiring new ones. A review of the field has revealed a lack of efficient, rule-based Customer Churn Prediction (CCP) approaches in the telecommunication sector. This study proposes an intelligent rule-based decision-making technique, based on rough set theory (RST), to extract important decision rules related to customer churn and non-churn. The proposed approach effectively performs classification of churn from non-churn customers, along with prediction of those customers who will churn or may possibly churn in the near future. Extensive simulation experiments are carried out to evaluate the performance of our proposed RST based CCP approach using four rule-generation mechanisms, namely, the Exhaustive Algorithm (EA), Genetic Algorithm (GA), Covering Algorithm (CA) and the LEM2 algorithm (LA). Empirical results show that RST based on GA is the most efficient technique for extracting implicit knowledge in the form of decision rules from the publicly available, benchmark telecom dataset. Further, comparative results demonstrate that our proposed approach offers a globally optimal solution for CCP in the telecom sector, when benchmarked against several state-of-the-art methods. Finally, we show how attribute-level analysis can pave the way for developing a successful customer retention policy that could form an indispensable part of strategic decision making and planning process in the telecom sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助大力沛萍采纳,获得10
1秒前
Yan123456完成签到,获得积分10
2秒前
可靠往事完成签到,获得积分10
2秒前
树懒发布了新的文献求助10
2秒前
李健的粉丝团团长应助shen采纳,获得10
3秒前
顾矜应助真的是猫采纳,获得10
4秒前
大模型应助苗条的小肥羊采纳,获得10
4秒前
8秒前
大力沛萍完成签到,获得积分10
10秒前
啾啾完成签到,获得积分10
10秒前
12秒前
一五完成签到,获得积分10
13秒前
心灵美的修洁完成签到 ,获得积分10
15秒前
小娟娟完成签到,获得积分10
16秒前
糙糙科研完成签到,获得积分10
16秒前
真的是猫给真的是猫的求助进行了留言
17秒前
shen发布了新的文献求助10
17秒前
19秒前
20秒前
AATRAHASIS完成签到,获得积分10
22秒前
22秒前
23秒前
Lucas应助机灵的幼菱采纳,获得10
23秒前
25秒前
丁牛青发布了新的文献求助10
25秒前
26秒前
26秒前
26秒前
27秒前
27秒前
hhhh发布了新的文献求助10
28秒前
29秒前
体贴的梦露完成签到,获得积分10
30秒前
伈X发布了新的文献求助10
30秒前
30秒前
黙宇循光完成签到 ,获得积分10
30秒前
青瓜大王发布了新的文献求助10
31秒前
zh完成签到,获得积分10
32秒前
33秒前
33秒前
高分求助中
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Historia de la ciencia jurídica europea 600
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3069575
求助须知:如何正确求助?哪些是违规求助? 2723533
关于积分的说明 7482058
捐赠科研通 2370562
什么是DOI,文献DOI怎么找? 1257065
科研通“疑难数据库(出版商)”最低求助积分说明 609810
版权声明 596861