清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Customer churn prediction in the telecommunication sector using a rough set approach

水准点(测量) 计算机科学 粗集 集合(抽象数据类型) 领域(数学) 订单(交换) 数据挖掘 实证研究 机器学习 决策规则 人工智能 业务 地理 纯数学 程序设计语言 哲学 认识论 数学 大地测量学 财务
作者
Adnan Amin,Sajid Anwar,Awais Adnan,Muhammad Nawaz,Khalid S. Al-awfi,Amir Hussain,Kaizhu Huang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:237: 242-254 被引量:154
标识
DOI:10.1016/j.neucom.2016.12.009
摘要

Customer churn is a critical and challenging problem affecting business and industry, in particular, the rapidly growing, highly competitive telecommunication sector. It is of substantial interest to both academic researchers and industrial practitioners, interested in forecasting the behavior of customers in order to differentiate the churn from non-churn customers. The primary motivation is the dire need of businesses to retain existing customers, coupled with the high cost associated with acquiring new ones. A review of the field has revealed a lack of efficient, rule-based Customer Churn Prediction (CCP) approaches in the telecommunication sector. This study proposes an intelligent rule-based decision-making technique, based on rough set theory (RST), to extract important decision rules related to customer churn and non-churn. The proposed approach effectively performs classification of churn from non-churn customers, along with prediction of those customers who will churn or may possibly churn in the near future. Extensive simulation experiments are carried out to evaluate the performance of our proposed RST based CCP approach using four rule-generation mechanisms, namely, the Exhaustive Algorithm (EA), Genetic Algorithm (GA), Covering Algorithm (CA) and the LEM2 algorithm (LA). Empirical results show that RST based on GA is the most efficient technique for extracting implicit knowledge in the form of decision rules from the publicly available, benchmark telecom dataset. Further, comparative results demonstrate that our proposed approach offers a globally optimal solution for CCP in the telecom sector, when benchmarked against several state-of-the-art methods. Finally, we show how attribute-level analysis can pave the way for developing a successful customer retention policy that could form an indispensable part of strategic decision making and planning process in the telecom sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
axiao完成签到,获得积分10
12秒前
asdf发布了新的文献求助30
13秒前
13秒前
axiao发布了新的文献求助10
18秒前
asdf完成签到,获得积分10
19秒前
CodeCraft应助whiter采纳,获得10
20秒前
40秒前
49秒前
whiter发布了新的文献求助10
52秒前
whiter完成签到,获得积分10
57秒前
lanxinge完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
liwang9301完成签到,获得积分10
2分钟前
2分钟前
碧蓝雁风完成签到 ,获得积分10
3分钟前
几两完成签到 ,获得积分10
3分钟前
3分钟前
yxl要顺利毕业_发6篇C完成签到,获得积分10
3分钟前
Setlla完成签到 ,获得积分10
3分钟前
Hello应助山间的话采纳,获得10
3分钟前
4分钟前
山间的话发布了新的文献求助10
4分钟前
howgoods完成签到 ,获得积分10
4分钟前
5分钟前
桥西小河完成签到 ,获得积分10
5分钟前
李健的小迷弟应助lovelife采纳,获得10
6分钟前
6分钟前
小嚣张完成签到,获得积分10
6分钟前
充电宝应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
alanbike完成签到,获得积分10
6分钟前
7分钟前
7分钟前
华老师发布了新的文献求助10
7分钟前
天天快乐应助华老师采纳,获得10
7分钟前
华老师完成签到,获得积分20
7分钟前
jasmine完成签到 ,获得积分10
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965722
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155723
捐赠科研通 3245436
什么是DOI,文献DOI怎么找? 1792903
邀请新用户注册赠送积分活动 874184
科研通“疑难数据库(出版商)”最低求助积分说明 804229