已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Customer churn prediction in the telecommunication sector using a rough set approach

水准点(测量) 计算机科学 粗集 集合(抽象数据类型) 领域(数学) 订单(交换) 数据挖掘 实证研究 机器学习 决策规则 人工智能 业务 哲学 数学 大地测量学 财务 认识论 纯数学 地理 程序设计语言
作者
Adnan Amin,Sajid Anwar,Awais Adnan,Muhammad Nawaz,Khalid S. Al-awfi,Amir Hussain,Kaizhu Huang
出处
期刊:Neurocomputing [Elsevier]
卷期号:237: 242-254 被引量:154
标识
DOI:10.1016/j.neucom.2016.12.009
摘要

Customer churn is a critical and challenging problem affecting business and industry, in particular, the rapidly growing, highly competitive telecommunication sector. It is of substantial interest to both academic researchers and industrial practitioners, interested in forecasting the behavior of customers in order to differentiate the churn from non-churn customers. The primary motivation is the dire need of businesses to retain existing customers, coupled with the high cost associated with acquiring new ones. A review of the field has revealed a lack of efficient, rule-based Customer Churn Prediction (CCP) approaches in the telecommunication sector. This study proposes an intelligent rule-based decision-making technique, based on rough set theory (RST), to extract important decision rules related to customer churn and non-churn. The proposed approach effectively performs classification of churn from non-churn customers, along with prediction of those customers who will churn or may possibly churn in the near future. Extensive simulation experiments are carried out to evaluate the performance of our proposed RST based CCP approach using four rule-generation mechanisms, namely, the Exhaustive Algorithm (EA), Genetic Algorithm (GA), Covering Algorithm (CA) and the LEM2 algorithm (LA). Empirical results show that RST based on GA is the most efficient technique for extracting implicit knowledge in the form of decision rules from the publicly available, benchmark telecom dataset. Further, comparative results demonstrate that our proposed approach offers a globally optimal solution for CCP in the telecom sector, when benchmarked against several state-of-the-art methods. Finally, we show how attribute-level analysis can pave the way for developing a successful customer retention policy that could form an indispensable part of strategic decision making and planning process in the telecom sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Seven完成签到 ,获得积分10
刚刚
仁怡完成签到 ,获得积分10
1秒前
大贺呀完成签到,获得积分10
2秒前
ace发布了新的文献求助10
3秒前
cc完成签到,获得积分20
3秒前
汉堡包应助模拟卷采纳,获得30
4秒前
Willow完成签到,获得积分10
8秒前
8秒前
对3药不起发布了新的文献求助10
8秒前
英姑应助娜娜采纳,获得10
9秒前
ccm应助123采纳,获得30
9秒前
小马甲应助123采纳,获得30
9秒前
舒心的小刺猬完成签到,获得积分10
10秒前
10秒前
lwm不想看文献完成签到 ,获得积分10
11秒前
模拟卷完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
14秒前
顾矜应助LYZ采纳,获得10
16秒前
zrk发布了新的文献求助10
16秒前
17秒前
嘎嘣脆的桃儿完成签到,获得积分10
17秒前
Junsir发布了新的文献求助10
17秒前
乐辰发布了新的文献求助10
17秒前
Shmily完成签到,获得积分10
19秒前
20秒前
ddj发布了新的文献求助10
22秒前
执着的傲蕾完成签到 ,获得积分10
25秒前
星辰大海应助吃死你啦啦采纳,获得10
27秒前
28秒前
28秒前
28秒前
29秒前
杰哥完成签到 ,获得积分10
29秒前
小二郎应助zrk采纳,获得10
30秒前
潘润朗完成签到,获得积分10
30秒前
虚幻的冬瓜完成签到 ,获得积分10
33秒前
ace发布了新的文献求助10
35秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345203
求助须知:如何正确求助?哪些是违规求助? 4480262
关于积分的说明 13945786
捐赠科研通 4377612
什么是DOI,文献DOI怎么找? 2405382
邀请新用户注册赠送积分活动 1397974
关于科研通互助平台的介绍 1370340