Autoreject: Automated artifact rejection for MEG and EEG data

计算机科学 工件(错误) 脑电图 人工智能 模式识别(心理学) 神经科学 心理学
作者
Mainak Jas,Denis A. Engemann,Yousra Bekhti,Federico Raimondo,Alexandre Gramfort
出处
期刊:NeuroImage [Elsevier]
卷期号:159: 417-429 被引量:410
标识
DOI:10.1016/j.neuroimage.2017.06.030
摘要

We present an automated algorithm for unified rejection and repair of bad trials in magnetoencephalography (MEG) and electroencephalography (EEG) signals. Our method capitalizes on cross-validation in conjunction with a robust evaluation metric to estimate the optimal peak-to-peak threshold - a quantity commonly used for identifying bad trials in M/EEG. This approach is then extended to a more sophisticated algorithm which estimates this threshold for each sensor yielding trial-wise bad sensors. Depending on the number of bad sensors, the trial is then repaired by interpolation or by excluding it from subsequent analysis. All steps of the algorithm are fully automated thus lending itself to the name Autoreject. In order to assess the practical significance of the algorithm, we conducted extensive validation and comparisons with state-of-the-art methods on four public datasets containing MEG and EEG recordings from more than 200 subjects. The comparisons include purely qualitative efforts as well as quantitatively benchmarking against human supervised and semi-automated preprocessing pipelines. The algorithm allowed us to automate the preprocessing of MEG data from the Human Connectome Project (HCP) going up to the computation of the evoked responses. The automated nature of our method minimizes the burden of human inspection, hence supporting scalability and reliability demanded by data analysis in modern neuroscience.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助包容的剑采纳,获得10
刚刚
淡紫浅蓝发布了新的文献求助10
刚刚
深情安青应助单纯哈密瓜采纳,获得30
2秒前
3秒前
4秒前
bkagyin应助今年我必胖20斤采纳,获得10
5秒前
7秒前
7秒前
vision0000发布了新的文献求助10
9秒前
芙芙官应助刻苦冬易采纳,获得30
12秒前
greentea发布了新的文献求助10
12秒前
13秒前
包容的剑发布了新的文献求助10
13秒前
15秒前
小马甲应助傻傻的乌冬面采纳,获得10
15秒前
16秒前
17秒前
LL发布了新的文献求助10
18秒前
orixero应助孔雀翎采纳,获得10
18秒前
爆米花应助L353052833采纳,获得10
18秒前
饭二完成签到,获得积分10
18秒前
青藤完成签到,获得积分10
19秒前
时若完成签到 ,获得积分10
19秒前
科目三应助dochx采纳,获得10
19秒前
xixi890430完成签到,获得积分10
21秒前
21秒前
23秒前
23秒前
27秒前
xixi890430发布了新的文献求助10
27秒前
27秒前
所所应助铅笔995采纳,获得10
30秒前
31秒前
无意识形态完成签到,获得积分10
32秒前
风趣小蜜蜂完成签到 ,获得积分10
32秒前
可爱的函函应助小四喜采纳,获得10
33秒前
科研通AI2S应助11采纳,获得10
33秒前
桐桐应助a_hu采纳,获得10
33秒前
淡紫浅蓝发布了新的文献求助10
38秒前
39秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542916
求助须知:如何正确求助?哪些是违规求助? 3120308
关于积分的说明 9342102
捐赠科研通 2818290
什么是DOI,文献DOI怎么找? 1549524
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978