A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences

计算机科学 化学信息学 药物靶点 水准点(测量) 分类器(UML) 人工智能 计算生物学 代表(政治) 支持向量机 特征向量 药物重新定位 模式识别(心理学) 指纹(计算) 伪氨基酸组成 机器学习 药品 生物信息学 生物 氨基酸 政治 药理学 生物化学 法学 地理 政治学 二肽 大地测量学
作者
Yuan Huang,Zhu-Hong You,Xing Chen
出处
期刊:Current Protein & Peptide Science [Bentham Science]
卷期号:19 (5): 468-478 被引量:72
标识
DOI:10.2174/1389203718666161122103057
摘要

Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand, the experimental methods for detecting the interactions among drugs and proteins are costly and inefficient.Therefore, computational approaches for predicting DTI are drawing increasing attention in recent years. In this paper, we report a novel computational model for predicting the DTI using extremely randomized trees model and protein amino acids information.More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Representation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to describe its substructure information. Then the DTI pair is characterized by concatenating the two vector spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predicting the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor.The experimental results demonstrate that this method achieves promising prediction accuracies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector Machine classifier. And we also compared the proposed model with existing computational models, and confirmed 15 potential drug-target interactions by looking for existing databases.The experiment results show that the proposed method is feasible and promising for predicting drug-target interactions for new drug candidate screening based on sizeable features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dddyrrrrr完成签到 ,获得积分10
1秒前
1秒前
科研通AI6应助LQ采纳,获得30
2秒前
搜集达人应助善良的函采纳,获得10
3秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
Hu发布了新的文献求助10
5秒前
Hello应助123采纳,获得10
5秒前
7秒前
可爱的函函应助默默问晴采纳,获得10
7秒前
soapffz完成签到,获得积分0
7秒前
田様应助伶俐的招牌采纳,获得10
8秒前
8秒前
8秒前
9秒前
无花果应助leec采纳,获得30
9秒前
炙热萝发布了新的文献求助10
10秒前
Auh完成签到,获得积分10
10秒前
AN发布了新的文献求助10
10秒前
hailey发布了新的文献求助10
12秒前
13秒前
zhuhe完成签到,获得积分10
13秒前
13秒前
丰知然应助小点点采纳,获得10
14秒前
13发布了新的文献求助10
14秒前
Hu完成签到,获得积分20
15秒前
15秒前
Hayat发布了新的文献求助50
15秒前
烟花应助灵巧的石头采纳,获得10
15秒前
16秒前
大模型应助调皮的巧凡采纳,获得10
16秒前
16秒前
16秒前
别管我了完成签到,获得积分10
16秒前
17秒前
yxy发布了新的文献求助10
17秒前
健康小宋完成签到,获得积分10
17秒前
斯文败类应助CDX采纳,获得10
17秒前
善良的函发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578047
求助须知:如何正确求助?哪些是违规求助? 4663043
关于积分的说明 14744355
捐赠科研通 4603721
什么是DOI,文献DOI怎么找? 2526643
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465657