A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences

计算机科学 化学信息学 药物靶点 水准点(测量) 分类器(UML) 人工智能 计算生物学 代表(政治) 支持向量机 特征向量 药物重新定位 模式识别(心理学) 指纹(计算) 伪氨基酸组成 机器学习 药品 生物信息学 生物 氨基酸 政治 药理学 生物化学 法学 地理 政治学 二肽 大地测量学
作者
Yuan Huang,Zhu-Hong You,Xing Chen
出处
期刊:Current Protein & Peptide Science [Bentham Science]
卷期号:19 (5): 468-478 被引量:72
标识
DOI:10.2174/1389203718666161122103057
摘要

Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand, the experimental methods for detecting the interactions among drugs and proteins are costly and inefficient.Therefore, computational approaches for predicting DTI are drawing increasing attention in recent years. In this paper, we report a novel computational model for predicting the DTI using extremely randomized trees model and protein amino acids information.More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Representation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to describe its substructure information. Then the DTI pair is characterized by concatenating the two vector spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predicting the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor.The experimental results demonstrate that this method achieves promising prediction accuracies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector Machine classifier. And we also compared the proposed model with existing computational models, and confirmed 15 potential drug-target interactions by looking for existing databases.The experiment results show that the proposed method is feasible and promising for predicting drug-target interactions for new drug candidate screening based on sizeable features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
芝麻完成签到,获得积分10
1秒前
Demi完成签到,获得积分10
2秒前
2秒前
4秒前
任性盼夏发布了新的文献求助10
4秒前
刘五十七发布了新的文献求助10
5秒前
6秒前
Owen应助adeno采纳,获得20
6秒前
xiao123789发布了新的文献求助10
7秒前
8秒前
colaaa完成签到,获得积分20
8秒前
布丁完成签到,获得积分10
8秒前
胡图图完成签到,获得积分10
8秒前
RTP发布了新的文献求助10
9秒前
luca完成签到,获得积分10
9秒前
10秒前
xxy发布了新的文献求助10
11秒前
shc完成签到 ,获得积分10
11秒前
叶子完成签到,获得积分10
11秒前
Mry完成签到,获得积分10
12秒前
任性盼夏完成签到,获得积分10
13秒前
落后冬云完成签到 ,获得积分10
13秒前
colaaa发布了新的文献求助10
13秒前
要减肥的凝琴完成签到,获得积分10
13秒前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
14秒前
14秒前
16秒前
天天小女孩完成签到 ,获得积分10
16秒前
柠檬茶完成签到 ,获得积分10
17秒前
上官若男应助Gavin采纳,获得10
18秒前
胡晓平完成签到,获得积分10
19秒前
英俊的铭应助靓丽初蓝采纳,获得10
19秒前
Even发布了新的文献求助10
19秒前
玉崟完成签到 ,获得积分10
19秒前
lemonlmm应助lxlcx采纳,获得50
20秒前
Xiaque完成签到 ,获得积分10
21秒前
21秒前
[刘小婷]完成签到,获得积分10
22秒前
XXXXH完成签到,获得积分10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162560
求助须知:如何正确求助?哪些是违规求助? 2813457
关于积分的说明 7900425
捐赠科研通 2473012
什么是DOI,文献DOI怎么找? 1316641
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175