A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences

计算机科学 化学信息学 药物靶点 水准点(测量) 分类器(UML) 人工智能 计算生物学 代表(政治) 支持向量机 特征向量 药物重新定位 模式识别(心理学) 指纹(计算) 伪氨基酸组成 机器学习 药品 生物信息学 生物 氨基酸 政治 药理学 生物化学 法学 地理 政治学 二肽 大地测量学
作者
Yuan Huang,Zhu-Hong You,Xing Chen
出处
期刊:Current Protein & Peptide Science [Bentham Science Publishers]
卷期号:19 (5): 468-478 被引量:72
标识
DOI:10.2174/1389203718666161122103057
摘要

Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand, the experimental methods for detecting the interactions among drugs and proteins are costly and inefficient.Therefore, computational approaches for predicting DTI are drawing increasing attention in recent years. In this paper, we report a novel computational model for predicting the DTI using extremely randomized trees model and protein amino acids information.More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Representation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to describe its substructure information. Then the DTI pair is characterized by concatenating the two vector spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predicting the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor.The experimental results demonstrate that this method achieves promising prediction accuracies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector Machine classifier. And we also compared the proposed model with existing computational models, and confirmed 15 potential drug-target interactions by looking for existing databases.The experiment results show that the proposed method is feasible and promising for predicting drug-target interactions for new drug candidate screening based on sizeable features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
aaaaa完成签到,获得积分10
1秒前
2秒前
烟花应助快乐的风采纳,获得10
2秒前
3秒前
zbw发布了新的文献求助10
4秒前
Mercurius完成签到,获得积分10
5秒前
5秒前
孙小头完成签到 ,获得积分10
7秒前
wjw发布了新的文献求助10
10秒前
含糊的尔槐完成签到,获得积分10
10秒前
Ava应助名天采纳,获得10
10秒前
13秒前
14秒前
cxwcn完成签到 ,获得积分10
16秒前
19秒前
19秒前
轩风发布了新的文献求助10
19秒前
快乐的风发布了新的文献求助10
20秒前
画清风完成签到,获得积分10
20秒前
20秒前
bnjay发布了新的文献求助50
21秒前
酷波er应助LANER采纳,获得10
21秒前
冷傲的xu完成签到,获得积分10
23秒前
24秒前
25秒前
Ava应助zzm采纳,获得10
26秒前
27秒前
zbw完成签到 ,获得积分20
27秒前
Lyla完成签到,获得积分10
27秒前
拼搏的败完成签到 ,获得积分10
28秒前
chf102完成签到,获得积分10
29秒前
快乐的风完成签到,获得积分20
30秒前
单薄的西装应助Abdory采纳,获得10
30秒前
30秒前
31秒前
31秒前
Lyla发布了新的文献求助10
31秒前
充电宝应助常乐的大宝剑采纳,获得10
32秒前
冷傲的夜香发布了新的文献求助200
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719