化学
水溶液
激光诱导击穿光谱
原位
水下
光谱学
分析化学(期刊)
跟踪(心理语言学)
微量气体
激光器
无机化学
化学工程
环境化学
有机化学
光学
物理
哲学
工程类
地质学
海洋学
量子力学
语言学
作者
Tian‐Jia Jiang,Meng Yang,Shanshan Li,Ming Ma,Nanjing Zhao,Zheng Guo,Jinhuai Liu,Xing‐Jiu Huang
标识
DOI:10.1021/acs.analchem.7b00629
摘要
Traditional laser-induced breakdown spectroscopy (LIBS) always fails to directly detect target in aqueous solution due to rapid quenching of emitted light and adsorption of pulse energy by surrounding water. A method is proposed for the in situ underwater LIBS analysis of Cr(VI) in aqueous solution freed from the common problems mentioned above by combining a gas-assisted localized liquid discharge apparatus with electrosorption for the first time. In this approach, the introduction of the gas-assisted localized liquid discharge apparatus provides an instantaneous gaseous environment for underwater LIBS measurement (that is, the transfer of sampling matrix is not needed from aqueous solution to dry state). The preconcentration of Cr(VI) is achieved by electrosorption with a positive potential applied around adsorbents, which can promote the adsorption of Cr(VI) and inhibit that of the coexisting cations leading to a good anti-interference. Amino groups functionalized chitosan-modified graphene oxide (CS-GO) is utilized for Cr(VI) enrichment, which can be protonated to form NH3+ in acidic condition promoting the adsorption toward Cr(VI) by electrostatic attraction. The highest detection sensitivity of 5.15 counts μg-1 L toward Cr(VI) is found for the optimized electrosorption potential (EES = 1.5 V) and electrosorption time (tES = 600 s) without interference from coexisting metal ions. A corresponding limit of detection (LOD) of 12.3 μg L-1 (3σ method) is achieved, which is amazingly improved by 2 or even 3 orders of magnitude compared to the previous reports of LIBS.
科研通智能强力驱动
Strongly Powered by AbleSci AI