CPPred-RF: A Sequence-based Predictor for Identifying Cell-Penetrating Peptides and Their Uptake Efficiency

序列(生物学) 计算生物学 化学 生物 生物化学
作者
Leyi Wei,Pengwei Xing,Ran Su,Gaotao Shi,Zhanshan Sam,Quan Zou
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:16 (5): 2044-2053 被引量:192
标识
DOI:10.1021/acs.jproteome.7b00019
摘要

Cell-penetrating peptides (CPPs), have been proven as important drug-delivery vehicles, demonstrating the potential as therapeutic candidates. The past decade has witnessed a rapid growth in CPP-based research. Recently, many computational efforts have been made to develop machine-learning-based methods for identifying CPPs. Although much progress has been made, existing methods still suffer low feature representation capability that limits further performance improvement. In this study, we propose a novel predictor called CPPred-RF, in which we integrate multiple sequence-based feature descriptors to sufficiently explore distinct information embedded in CPPs, employ a well-established feature selection technique to improve the feature representation, and, for the first time, construct a two-layer prediction framework based on the random forest algorithm. The jackknife results on benchmark data sets show that the proposed CPPred-RF is at least competitive with the state-of-the-art predictors. Moreover, we establish the first online Web server in terms of predicting CPPs and their uptake efficiency simultaneously. It is freely available at http://server.malab.cn/CPPred-RF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
搜集达人应助123456采纳,获得10
2秒前
医路潜行发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
tatai完成签到,获得积分20
3秒前
3秒前
高挑的墨镜完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
Ava应助金木水火土采纳,获得10
5秒前
6秒前
lan发布了新的文献求助10
6秒前
7秒前
Lucas应助静不净采纳,获得10
7秒前
栗栗完成签到 ,获得积分10
7秒前
dsf发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
linmm完成签到 ,获得积分10
11秒前
Ava应助zyz采纳,获得10
12秒前
圈圈叉叉完成签到,获得积分10
12秒前
pp1230发布了新的文献求助10
12秒前
13秒前
13秒前
金木水火土完成签到,获得积分10
14秒前
iNk应助嘻嘻嘻采纳,获得10
14秒前
123456发布了新的文献求助10
16秒前
可可发布了新的文献求助10
17秒前
酷波er应助qiyian采纳,获得30
17秒前
CipherSage应助tleeny采纳,获得10
17秒前
18秒前
19秒前
汉堡包应助郭小冷采纳,获得10
19秒前
尊敬的醉波完成签到 ,获得积分20
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
hb完成签到,获得积分10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662898
求助须知:如何正确求助?哪些是违规求助? 3223698
关于积分的说明 9752620
捐赠科研通 2933587
什么是DOI,文献DOI怎么找? 1606194
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734775