Singapore grouper iridovirus (SGIV) is a devastating aquaculture virus responsible for heavy economic losses to grouper, Epinephelus sp. aquaculture. The aim of this study was to develop a rapid and sensitive detection method for SGIV infections in infected groupers.We previously generated DNA aptamers against SGIV-infected cells. In this study, we established and characterized a novel aptamer (Q3)-based enzyme-linked apta-sorbent assay (ELASA) for the detection of SGIV infection in Epinephelus coioides. The Q3-based ELASA could detect SGIV infection rapidly in vitro and in vivo, with high specificity and stability. Q3-based ELASA specifically recognized SGIV-infected cells, but not other-virus-infected cells or uninfected cells. Q3-based ELASA detected SGIV infection in a dose-dependent manner at Q3 concentrations as low as 125 nmol l(-1) . The results in relation to SGIV-infected cells (5 × 10(4) ), incubation time (1 min) and incubation temperature (37°C) demonstrated that Q3-based ELASA could detect SGIV infection quickly and stably, superior to antibody-based enzyme-linked immunosorbent assay. Q3-based ELASA could detect the presence of SGIV infection in kidney, liver and spleen samples in vivo, at dilutions of 1/50, 1/100 and 1/50 respectively. The complete detection process took 1-2 h.Q3-based ELASA could be a useful tool for diagnosing SGIV infection.This is the first developed aptamer-based ELASA for detecting SGIV infection, and is widely applicable in grouper aquaculture industry in light of its rapidity, and high specificity and stability.